【题目】已知正方形ABCD和矩形ACEF所在的平面互相垂直, ,AF=1,M是线段EF的中点.
(1)求证:AM∥平面BDE;
(2)求证:AM⊥平面BDF.
【答案】
(1)解:建立如图的直角坐标系,则各点的坐标分别为:
O(0,0,0),A(0,1,0),B(﹣1,0,0),C(0,﹣1,0,),D(1,0,0,),
E(0,﹣1,1),F(0,1,1),M(0,0,1)
∵
∴ ,即AM∥OE,
又∵AM平面BDE,OE平面BDE,
∴AM∥平面BDE
(2)解:∵ ,
∴ ,
∴AM⊥BD,AM⊥DF,∴AM⊥平面BDF.
【解析】(1)利用空间向量来证明,先建立空间直角坐标系,求出定点坐标,欲证AM∥平面BDE,只需用坐标证明向量 与平面BDE上的一个向量是平行向量即可.(2)欲证AM⊥平面BDF,只需证明向量 与平面BDF中的两个不共线向量垂直即可,也即在平面BDF中找到两个向量,与向量 数量积等于0.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对直线与平面垂直的判定的理解,了解一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
科目:高中数学 来源: 题型:
【题目】已知f(x)=lnx,g(x)= x2+mx+ (m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x)﹣x+3,求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)﹣f(2a)< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求A到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:y=kx﹣1与双曲线x2﹣y2=1的左支交于A,B两点.
(1)求斜率k的取值范围;
(2)若直线l2经过点P(﹣2,0)及线段AB的中点Q且l2在y轴上截距为﹣16,求直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别是椭圆的长轴与短轴的一个端点, 是椭圆的左、右焦点,以点为圆心、3为半径的圆与以点为圆心、1为半径的圆的交点在椭圆上,且.
(1)求椭圆的方程;
(2)设为椭圆上一点,直线与轴交于点,直线与轴交于点,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若A= ,b(1﹣cosC)=ccosA,b=2,则△ABC的面积为( )
A.
B.2
C.
D.或2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com