精英家教网 > 高中数学 > 题目详情
13.已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1},则a的值为(  )
A.2B.4C.-2D.-1

分析 由题意可得-3≤ax≤2,即-2≤x≤1,由此可得a的值.

解答 解:由题意可得,不等式|ax+1|≤3,
即-3≤ax+1≤3,即-4≤ax≤2,即-2≤x≤1,
∴a=2,
故选:A.

点评 本题主要考查绝对值不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.(1)计算:2lg4+lg$\frac{5}{8}+\sqrt{{{(\sqrt{3}-π)}^2}}$;
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=3,求${x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\sqrt{3}$x,关于x的方程ax2+bx-$\sqrt{{a}^{2}-{b}^{2}}$=0的两根为m,n,则点P(m,n)(  )
A.在圆x2+y2=7内B.在圆x2+y2=7上
C.在椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1内D.在椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.关于函数y=tan(2x-$\frac{π}{3}$),下列说法正确的是(  )
A.最小正周期为πB.是奇函数
C.在区间$(-\frac{1}{12}π,\frac{5}{12}π)$上单调递减D.$(\frac{5}{12}π,0)$为其图象的一个对称中心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求$f(\frac{7π}{8})$的值;
(2)求函数g(x)=f(x)+f(x+$\frac{π}{4}$)的对称轴与单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知关于x的一元二次不等式mx2-(1-m)x+m≥0的解集为R,则实数m的取值范围是[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某厂有容量300吨的水塔一个,每天从早六点到晚十点供应生活和生产用水,已知:该厂生活用水每小时10吨,工业用水总量W(吨)与时间t(单位:小时,规定早晨六点时t=0)的函数关系为W=100$\sqrt{t}$,水塔的进水量有10级,第一级每小时水10吨,以后每提高一级,进水量增加10吨.若某天水塔原有水100吨,在供应同时打开进水管.问该天进水量应选择几级,既能保证该厂用水(即水塔中水不空),又不会使水溢出?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn=$\frac{n(n+1)}{2}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{bn}的前n项和,其中bn=$\frac{{{a_{n+1}}}}{{2{S_n}•{S_{n+1}}}}$,求Tn
(Ⅲ)若存在n∈N*,使得Tn-λan≥3λ成立,求出实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“a>1”是“函数f(x)=ax-sinx在R上是增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案