精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+$\sqrt{3}$cos2x-m,x∈R,且f(x)的最大值为1.
(1)求m的值;
(2)求f(x)的周期以及单调递增区间.

分析 (1)将函数f(x)化简为y=Asin(ωx+φ)的形式,结合三角函数的图象和性质,求出f(x)的取值最大值,可得m的值.
(2)利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;

解答 解:(1)函数f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+$\sqrt{3}$cos2x-m,x∈R,
化简得:f(x)=sin2x+$\sqrt{3}$cos2x-m,
=2sin(2x+$\frac{π}{3}$)-m.
∵f(x)的最大值为1.即2-m=1,
解得:m=1.
(2)由(1)可得f(x)=2sin(2x+$\frac{π}{3}$)-1.
最小正周期T=$\frac{2π}{ω}=\frac{2π}{2}=π$,
∵正弦函数的单调增区间为[2kπ$-\frac{π}{2}$,2kπ$+\frac{π}{2}$],(k∈Z)
可得:2kπ$-\frac{π}{2}$≤2x+$\frac{π}{3}$2kπ$+\frac{π}{2}$,
解得:kπ$-\frac{5π}{12}$≤x≤kπ$+\frac{π}{12}$.
∴函数f(x)的单调递增区间为[kπ$-\frac{5π}{12}$,kπ$+\frac{π}{12}$](k∈Z).

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=-$\frac{1}{2}$x2+blnx在区间[1,2]不单调,则b的取值范围是(  )
A.(-∞,1]B.[4,+∞)C.(-∞,-1]∪[4,+∞)D.(-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=cos(kx+$\frac{π}{6}$)的周期为4π,则正实数k的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=e-|x-1|的图象大致形状是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C:(x-2)2+(y-1)2=1.求过点A(3,4)的圆C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某商场饮料促销,规定:一次购买一箱在原价48元的基础上打9折,一次购买两箱可打8.5折,一次购买三箱可打8折,一次购买三箱以上均可享受7.5折的优惠.若此饮料只能整箱销售且每人每次限购10箱,试用解析法写出顾客购买的箱数x与所支付的费用y之间的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.两个半径都是1的球O1和球O2相切,且均与直二面角α-l-β的两个半平面都相切,另有一个半径为γ(γ<1)的小球O与这二面角的两个半平面也都相切,同时与球O1和球O2都外切,则γ的值为3-$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={x∈N+|2x≥x2},N={-1,0,1,2},则(∁RM)∩N=(  )
A.B.{-1}C.{1,2}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)数列{an}的前n项和Sn=An2+Bn(A,B是常数)求证:数列{an}是等差数列
(2)数列{ bn}的前n项和Sn=$\frac{{{a_1}(1-{q^n})}}{1-q}$,(q≠1)求证:数列{ bn}是等比数列.

查看答案和解析>>

同步练习册答案