精英家教网 > 高中数学 > 题目详情
8.抛物线y2=2x与直线l相交于A,B两点,且$\overrightarrow{OA}⊥\overrightarrow{OB}$,则直线恒过定点(2,0).

分析 设直线l:x=my+b,代入抛物线y2=2x,利用韦达定理及向量数量积公式即可得到结论.

解答 解:设直线l:x=my+b,代入抛物线y2=2x,可得y2-2my-2b=0.
设A(x1,y1),B(x2,y2),则y1+y2=2m,y1y2=-2b,
∴x1x2=(my1+b)(my2+b)=b2
∵OA⊥OB,∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=b2-2b=0,
∵b≠0,
∴b=2,
∴直线l:x=my+2,
∴直线l过定点(2,0).
故答案为:(2,0).

点评 本题考查直线与抛物线的位置关系,考查向量知识的运用,正确运用韦达定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$=(-5,12),则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为$\frac{16}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ)(-$\frac{π}{2}$<α<0,0<β<$\frac{π}{2}$)且$|\overrightarrow a-\overrightarrow b|=\frac{{\sqrt{10}}}{5}$.
(1)求cos(α-β)的值;     
 (2)若$cosα=\frac{12}{13}$,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.△ABC中,A=$\frac{π}{6}$,B=$\frac{π}{4}$,b=$\sqrt{2}$,则a等于(  )
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知不等式ax2+2x+c>0的解集为{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}.
(Ⅰ)求a、c的值;
(Ⅱ)解不等式cx2-2x+a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,沿田字型路线从A往N走,且只能向右或向下走,随机地选一种走法,求经过点C的概率(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)证明:Cnm+Cnm-1=Cn+1m
(2)证明:Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线y=x-2的倾斜角和斜率分别是(  )
A.45°,1B.135°,-1C.45°,-1D.90°,不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平面直角坐标系内,曲线C:y2=xy 表示的点的轨迹为(  )
A.原点B.一条直线C.一点和一条直线D.两条相交直线

查看答案和解析>>

同步练习册答案