精英家教网 > 高中数学 > 题目详情
3.如图所示,某市拟在长为8km道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0)(x∈[0,4])的图象,且图象的最高点为S(3,2$\sqrt{3}$),赛道的后一部分为折线段MNP,且∠MNP=120°
(1)求M、P两点间的直线距离;
(2)求折线段赛道MNP长度的最大值.

分析 (1)由题意结合图象求得A和T,进一步求出ω,则函数解析式可求,代入M的横坐标求得的坐标,由两点间的距离公式求得MP的值;
(2)在△MNP中,设出∠PMN=θ,由正弦定理把PN、MN用含θ的代数式表示,化简后利用三角函数求得最值.

解答 解:(1)依题意,有A=$2\sqrt{3}$,
又$\frac{T}{4}=3$,T=12,∴ω=$\frac{2π}{T}=\frac{2π}{12}=\frac{π}{6}$,
∴y=$2\sqrt{3}sin\frac{π}{6}x$,
当x=4时,$y=2\sqrt{3}sin\frac{π}{6}×4=2\sqrt{3}×\frac{\sqrt{3}}{2}=3$.
∴M(4,3),又P(8,0),
∴MP=$\sqrt{{4}^{2}+{3}^{2}}=5$;
(2)在△MNP中,
∠MNP=120°,MP=5,设∠PMN=θ,则0°<θ<60°,
由正弦定理得:$\frac{MP}{sin120°}=\frac{NP}{sinθ}=\frac{MN}{sin(60°-θ)}$,
∴$PN=\frac{10\sqrt{3}}{3}sinθ$,$MN=\frac{10\sqrt{3}}{3}sin(60°-θ)$,
故NP+MN=$\frac{10\sqrt{3}}{3}sinθ+\frac{10\sqrt{3}}{3}sin(60°-θ)$=$\frac{10\sqrt{3}}{3}sin(60°+θ)$.
∵0°<θ<60°,
∴当θ=30°时,折线段赛道MNP最长.

点评 本题考查y=Asin(ωx+φ)的图象的求法,训练了利用正余弦定理求解三角形,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若正方体ABCD-A1B1C1D1的棱长为1,则三棱锥B-B1C1D的体积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的最小正周期及对称中心.
(1)f(x)=$\sqrt{co{s}^{2}x-co{s}^{4}x}$;
(2)f(x)=cos$\frac{π}{2}$x•cos[$\frac{π}{2}$(x-1)];
(3)f(x)=sinx•cosx-2sin3xcosx;
(4)f(x)=sin6x+cos6x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,∠A=45°,∠C=105°,BC=$\sqrt{2}$则AC为(  )
A.$\sqrt{3}-1$B.1C.2D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}中,a4=4,则2a1+a5+a9=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求不等式$|{\sqrt{3x-2}-3}|>1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=1+$\frac{m}{{e}^{x}-1}$(e为自然对数的底数)是奇函数,则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色.则不同取法的种数为544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设X是直角坐标平面上的任意点集,定义X*={(1-y,x-1)|(x,y)∈X}.若X*=X,则称点集X“关于运算*对称”.给定点集A={(x,y)|x2+y2=1},B={(x,y)|y=x-1},C={(x,y)||x-1|+|y|=1},其中“关于运算*对称”的点集个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案