精英家教网 > 高中数学 > 题目详情
13.设X是直角坐标平面上的任意点集,定义X*={(1-y,x-1)|(x,y)∈X}.若X*=X,则称点集X“关于运算*对称”.给定点集A={(x,y)|x2+y2=1},B={(x,y)|y=x-1},C={(x,y)||x-1|+|y|=1},其中“关于运算*对称”的点集个数为(  )
A.0B.1C.2D.3

分析 令1-y=X,x-1=Y,则y=1-X,x=1+Y,从而由A,B,C分别求出A*,B*,C*,从而依次判断即可.

解答 解:令1-y=X,x-1=Y,
则y=1-X,x=1+Y,
∵A={(x,y)|x2+y2=1},
∴A*={(X,Y)|(1+Y)2+(1-X)2=1},
故A≠A*
∵B={(x,y)|y=x-1},
∴B*={(X,Y)|1-X=1+Y-1,即Y=1-X},
故B≠B*
∵C={(x,y)||x-1|+|y|=1},
∴C*={(X,Y)||1+Y-1|+|1-X|=1,即|Y|+|1-X|=1},
故C=C*
故选:B.

点评 本题考查了集合的化简与应用,同时考查了学生对新定义的接受与转化能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图所示,某市拟在长为8km道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0)(x∈[0,4])的图象,且图象的最高点为S(3,2$\sqrt{3}$),赛道的后一部分为折线段MNP,且∠MNP=120°
(1)求M、P两点间的直线距离;
(2)求折线段赛道MNP长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=logax+ax2-2在区间(0,1)内无零点,则实数a的范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是梯形,AB∥DC,∠BAD=90°,$AB=AD=\frac{1}{2}CD$.
(Ⅰ)求证:CC1⊥BD; 
(Ⅱ)求证:平面BCC1⊥平面BDC1
(Ⅲ)在线段C1D1上是否存在一点P,使AP∥平面BDC1.若存在,请确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某单位为了了解用电量y(度)与当天平均气温x(℃)之间的关系,随机统计了某4天的当天平均气温与用电量(如表).由数据运用最小二乘法得线性回归方程$\widehaty=-2•x+a$,则a=60.
平均气温x(℃)181310-1
用电量y(度)25353763

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,如果输入的N是10,那么输出的S是(  )
A.2B.$\sqrt{10}$-1C.$\sqrt{11}$-1D.2$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用细钢管焊接而成的花坛围栏构件如右图所示,它的外框是一个等腰梯形PQRS,内部是一段抛物线和一根横梁.抛物线的顶点与梯形上底中点是焊接点O,梯形的腰紧靠在抛物线上,两条腰的中点是梯形的腰、抛物线以及横梁的焊接点A,B,抛物线与梯形下底的两个焊接点为C,D.已知梯形的高是40厘米,C、D两点间的距离为40厘米.
(1)求横梁AB的长度;
(2)求梯形外框的用料长度.
(注:细钢管的粗细等因素忽略不计,计算结果精确到1厘米.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知半圆的直径AB=10,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的最小值是(  )
A.$\frac{25}{2}$B.-25C.25D.-$\frac{25}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知在圆x2+y2-4x+2y=0内,过点E(1,0)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为(  )
A.$3\sqrt{5}$B.6$\sqrt{5}$C.$4\sqrt{15}$D.2$\sqrt{15}$

查看答案和解析>>

同步练习册答案