5£®ÓÃϸ¸Ö¹Üº¸½Ó¶ø³ÉµÄ»¨Ì³Î§À¸¹¹¼þÈçÓÒͼËùʾ£¬ËüµÄÍâ¿òÊÇÒ»¸öµÈÑüÌÝÐÎPQRS£¬ÄÚ²¿ÊÇÒ»¶ÎÅ×ÎïÏߺÍÒ»¸ùºáÁº£®Å×ÎïÏߵĶ¥µãÓëÌÝÐÎÉϵ×ÖеãÊǺ¸½ÓµãO£¬ÌÝÐεÄÑü½ô¿¿ÔÚÅ×ÎïÏßÉÏ£¬Á½ÌõÑüµÄÖеãÊÇÌÝÐεÄÑü¡¢Å×ÎïÏßÒÔ¼°ºáÁºµÄº¸½ÓµãA£¬B£¬Å×ÎïÏßÓëÌÝÐÎϵ׵ÄÁ½¸öº¸½ÓµãΪC£¬D£®ÒÑÖªÌÝÐεĸßÊÇ40ÀåÃ×£¬C¡¢DÁ½µã¼äµÄ¾àÀëΪ40ÀåÃ×£®
£¨1£©ÇóºáÁºABµÄ³¤¶È£»
£¨2£©ÇóÌÝÐÎÍâ¿òµÄÓÃÁϳ¤¶È£®
£¨×¢£ºÏ¸¸Ö¹ÜµÄ´ÖϸµÈÒòËØºöÂÔ²»¼Æ£¬¼ÆËã½á¹û¾«È·µ½1ÀåÃ×£®£©

·ÖÎö £¨1£©ÒÔOΪԭµã£¬ÌÝÐεÄÉϵ×ËùÔÚÖ±ÏßΪxÖᣬ½¨Á¢Ö±½Ç×ø±êϵ£¬ÉèÌÝÐÎϵ×ÓëyÖá½»ÓÚµãM£¬Å×ÎïÏߵķ½³ÌΪ£ºx2=2py£¨p£¼0£©£¬ÀûÓÃD£¨20£¬-40£©£¬Çó³öp£¬µÃµ½Å×ÎïÏß·½³Ì£¬¼´¿ÉÇó½âºáÁºABµÄ³¤¶È£®
£¨2£©ËµÃ÷ÌÝÐÎÑüµÄÖеãÊÇÌÝÐεÄÑüÓëÅ×ÎïÏßΨһµÄ¹«¹²µãÉè${l_{RQ}}£ºy+20=k£¨{x-10\sqrt{2}}£©£¨{k£¼0}£©$£¬ÁªÁ¢ÔÚÓëÅ×ÎïÏß·½³Ì£¬Í¨¹ýÏàÇйØÏµ£¬Çó³öÖ±ÏßµÄбÂÊ£¬È»ºóÇó½âÖÆ×÷ÌÝÐÎÍâ¿òµÄÓÃÁϳ¤¶È£®

½â´ð ½â£º£¨1£©Èçͼ£¬ÒÔOΪԭµã£¬ÌÝÐεÄÉϵ×ËùÔÚÖ±ÏßΪxÖᣬ½¨Á¢Ö±½Ç×ø±êϵ£¬
ÉèÌÝÐÎϵ×ÓëyÖá½»ÓÚµãM£¬Å×ÎïÏߵķ½³ÌΪ£ºx2=2py£¨p£¼0£©£¬
ÓÉÌâÒâD£¨20£¬-40£©£¬µÃp=-5£¬x2=-10y¡­3¡¯£¬
È¡$y=-20⇒x=¡À10\sqrt{2}$£¬
¼´$A£¨{-10\sqrt{2}£¬-20}£©£¬B£¨{10\sqrt{2}£¬-20}£©$£¬
$|{AB}|=20\sqrt{2}¡Ö28£¨{cm}£©$
´ð£ººáÁºABµÄ³¤¶ÈԼΪ28cm£®¡­6¡¯
£¨2£©ÓÉÌâÒ⣬µÃÌÝÐÎÑüµÄÖеãÊÇÌÝÐεÄÑüÓëÅ×ÎïÏßΨһµÄ¹«¹²µã
Éè${l_{RQ}}£ºy+20=k£¨{x-10\sqrt{2}}£©£¨{k£¼0}£©$¡­7¡¯
$\left\{{\begin{array}{l}{y+20=k£¨{x-10\sqrt{2}}£©}\\{{x^2}=-10y}\end{array}}\right.⇒{x^2}+10kx-100£¨{2+\sqrt{2}k}£©=0$£¬
Ôò$¡÷=100{k^2}+400£¨{2+\sqrt{2}k}£©=0⇒k=-2\sqrt{2}$£¬¼´${l_{RQ}}£ºy=-2\sqrt{2}x+20$¡­10¡¯
µÃ$Q£¨{5\sqrt{2}£¬0}£©£¬R£¨{15\sqrt{2}£¬-40}£©$$⇒|{OQ}|=5\sqrt{2}£¬|{MR}|=15\sqrt{2}£¬|{RQ}|=30\sqrt{2}$£¬
ÌÝÐÎÖܳ¤Îª$2£¨{5\sqrt{2}+15\sqrt{2}+30\sqrt{2}}£©=100\sqrt{2}¡Ö141£¨{cm}£©$£®
´ð£ºÖÆ×÷ÌÝÐÎÍâ¿òµÄÓÃÁϳ¤¶ÈԼΪ141cm¡­14¡¯

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏß·½³ÌµÄÓ¦Óã¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èôº¯Êýf£¨x£©=1+$\frac{m}{{e}^{x}-1}$£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©ÊÇÆæº¯Êý£¬ÔòʵÊýmµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚÕý·½ÐÎABCDÖУ¬ÒÑÖªAB=3£¬EÊÇCDÖе㣬ÄÇô$\overrightarrow{AE}\;•\;\overrightarrow{BD}$µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{27}{2}$B£®6C£®$\frac{9}{2}$D£®$\frac{7}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÉèXÊÇÖ±½Ç×ø±êÆ½ÃæÉϵÄÈÎÒâµã¼¯£¬¶¨ÒåX*={£¨1-y£¬x-1£©|£¨x£¬y£©¡ÊX}£®ÈôX*=X£¬Ôò³Æµã¼¯X¡°¹ØÓÚÔËËã*¶Ô³Æ¡±£®¸ø¶¨µã¼¯A={£¨x£¬y£©|x2+y2=1}£¬B={£¨x£¬y£©|y=x-1}£¬C={£¨x£¬y£©||x-1|+|y|=1}£¬ÆäÖС°¹ØÓÚÔËËã*¶Ô³Æ¡±µÄµã¼¯¸öÊýΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈçͼËùʾ£ºÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AB¡ÍBC£¬AB=BC=BB1£¬ÔòÆ½ÃæA1B1CÓëÆ½ÃæABCËù³ÉµÄ¶þÃæ½ÇµÄ´óСΪ$\frac{¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=x2-cosx£¬Èôµ±-¦Ð£¼x£¼¦Ðʱ£¬f£¨x1£©£¼f£¨x2£©ºã³ÉÁ¢£¬ÔòÏÂÁнáÂÛÒ»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®x1£¾x2B£®x1£¼x2C£®|x1|£¼|x2|D£®|x1|£¾|x2|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÕýÏîµÈ±ÈÊýÁÐ{an}ÖеÄa2£¬a4026ÊǺ¯Êýf£¨x£©=$\frac{1}{3}$x3-mx2+x+1£¨m£¼-1£©µÄ¼«Öµµã£¬Ôòlna2014µÄֵΪ£¨¡¡¡¡£©
A£®1B£®-1C£®0D£®ÓëmµÄÖµÓйØ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬µ±x¡Ý0ʱ£¬f£¨x£©=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x}£¬0¡Üx¡Ü2}\\{lo{g}_{16}x£¬x£¾2}\end{array}\right.$£¬Èôy=f2£¨x£©-af£¨x£©+a-1µÄÁãµã¸öÊýÊÇ7¸ö£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨$\frac{5}{4}$£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{log_2}£¨-x£©£¬\;\;x£¼0\\{2^{x-1}}£¬\;\;x¡Ý0\end{array}$£¬Ôòf£¨1£©=1£»Èôf£¨a£©=2£¬Ôòa=-4»ò2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸