精英家教网 > 高中数学 > 题目详情

【题目】做一个无盖的圆柱形水桶,若要使其体积是 ,且用料最省,则圆柱的底面半径为

【答案】3
【解析】设圆柱的高为h,半径为r则由圆柱的体积公式可得,πr2h=27π,即 ,要使用料最省即求全面积的最小值,而S全面积=πr2+2πrh= =
(法一)令S=f(r),结合导数可判断函数f(r)的单调性,进而可求函数取得最小值时的半径
(法二):S全面积=πr2+2πrh= = ,利用基本不等式可求用料最小时的r
解:设圆柱的高为h,半径为r
则由圆柱的体积公式可得,πr2h=27π

S全面积=πr2+2πrh= =
(法一)令S=f(r),(r>0)
=
令f′(r)≥0可得r≥3,令f′(r)<0可得0<r<3
∴f(r)在(0,3)单调递减,在[3,+∞)单调递增,则f(r)在r=3时取得最小值
(法二):S全面积=πr2+2πrh= =
= =27π
当且仅当 即r=3时取等号
当半径为3时,S最小即用料最省
故答案为:3
本题主要考查圆柱的体积及表面积的最值问题。要求用料最省,要根据实际问题转化为数学问题,即先设圆柱的高为h,半径为r,根据圆柱的体积公式可得到h,要使用料最省,即求圆柱全面积的最小值,根据公式代入全面积公式,利用不等式即可求解最小值。也可根据导数的单调性求解最小值问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个盒子里装有三张卡片分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3每次抽取1将抽取的卡片上的数字依次记为abc.求:

(1)“抽取的卡片上的数字满足abc”的概率;

(2)“抽取的卡片上的数字abc不完全相同”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设.

①若,曲线处的切线过点,求的值;

②若,求在区间上的最大值.

(2)设 两处取得极值,求证: 不同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数 的最小值为0,不等式 的解集为 .
(1)求集合
(2)设集合 ,若集合 是集合 的子集,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:

空气质量指数

(0,50]

(50,100]

(100,150]

(150,200]

(200,300]

300以上

空气质量等级

1级优

2级良

3级轻度污染

4级中度污染

5级重度污染

6级严重污染

(Ⅰ)请根据所给的折线图补全如图2所示的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(Ⅱ)在该月份中任取两天,求空气质量至少有一天为优或良的概率;
(Ⅲ)如果该市对环境进行治理,治理后经统计,每天的空气质量指数近似满足X~N(75,552),则治理后的空气质量指数均值大约下降了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在高为2的梯形ABCD中,AB∥CD,AB=2,CD=5,过A、B分别作AE⊥CD,BF⊥CD,垂足分别为E、F.已知DE=1,将梯形ABCD沿AE、BF同侧折起,得空间几何体ADE﹣BCF,如图2.
(Ⅰ)若AF⊥BD,证明:△BDE为直角三角形;
(Ⅱ)若DE∥CF, ,求平面ADC与平面ABFE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲,乙两种产品均需用两种原料,已知生产1吨每种产品需用原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.

原料限额

A(吨)

3

2

12

B(吨)

1

2

8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是实数,则“ ”是“ ”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中.

(Ⅰ)当时,解不等式

(Ⅱ)已知时,恒有,求实数的取值集合.

查看答案和解析>>

同步练习册答案