精英家教网 > 高中数学 > 题目详情
直线l:x-y+b=0与曲线
x=1+
2
cosθ
y=-2+
2
sinθ
(θ是参数)相切,则b=
 
考点:参数方程化成普通方程
专题:坐标系和参数方程
分析:由平方关系将参数方程化为普通方程,求出圆心坐标和半径,再由直线与圆相切的条件和点到直线的距离,列出方程求出b的值.
解答: 解:由曲线
x=1+
2
cosθ
y=-2+
2
sinθ
(θ是参数)得,普通方程为(x-1)2+(y+2)2=2,
则圆心坐标是(1,-2),半径r=
2

因为直线l:x-y+b=0与曲线相切,所以
2
=
|1+2+b|
2

解得b=-1或-5,
故答案为:-1或-5.
点评:本题考查参数方程化为普通方程,以及直线与圆相切的条件和点到直线的距离的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB=
π
4
,∠DBA=
π
6
,沿直径AB折起,使两个半圆所在平面互相垂直(如图2),E为AO的中点.

(1)求证:CB⊥DE;
(2)求三棱锥C-BOD的体积;
(3)求二角C-BD-O的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足:|
b
|=
a
b
=2,且
a
-
b
a
的夹角为
π
3
,则|
a
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,求证:
2ab
a+b
ab
a+b
2
a2+b2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
4
+
y2
3
=1的左右焦点分别为F1,F2,P是椭圆上的一动点,若△PF1F2是直角三角形,则△PF1F2的面积为(  )
A、3
B、3或
3
2
C、
3
2
D、6或3

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是首项为4,公差为1的等差数列;Sn为数列{bn}的前n项和,且Sn=n2+2n.
(1)求{an}及{bn}的通项公式an和bn
(2)f(n)=
an,n为正奇数
bn,n为正偶数
问是否存在k∈N+使f(k+27)=4f(k)成立?若存在,求出k的值;若不存在,说明理由;
(3)若对任意的正整数n,不等式 
a
(1+
1
b1
)(1+
1
b2
)(1+
1
bn
)
-
1
n-1+an+1
≤0恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

x2+1
+
x2-4x+8
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1+|x|
(x∈R),则下列结论中不正确的是(  )
A、对任意x∈R,等式f(-x)+f(x)=0恒成立
B、函数f(x)的值域为(-1,1)
C、对任意x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2
D、方程f(x)-x=0则R上有三个根

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
(x2-x1)
(lnx2-lnx1)
(x1+x2)
2
(x1<x2

查看答案和解析>>

同步练习册答案