精英家教网 > 高中数学 > 题目详情
在△ABC中,若tanA•tanB>1,则△ABC的形状(  )
A、一定是锐角三角形
B、一定是直角三角形
C、一定是钝角三角形
D、可能是锐角三角形,也可能是钝角三角形
考点:同角三角函数基本关系的运用,两角和与差的余弦函数
专题:计算题,解三角形
分析:由条件可得A、B都是锐角,tanA>0,tanB>0,再由 tan(A+B)=
tanA+tanB
1-tanA•tanB
<0,可得A+B为钝角,C为锐角,与偶此得出结论.
解答: 解:∵在△ABC中,满足tanA•tanB>1,∴A、B都是锐角,tanA>0,tanB>0.
再由 tan(A+B)=
tanA+tanB
1-tanA•tanB
<0,可得A+B为钝角,故由三角形内角和公式可得C为锐角.
综上可得这个三角形是锐角三角形.
故选:A.
点评:本题主要考查两角和的正切公式、三角形内角和公式的应用,判断三角形的形状,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,an=3an-1+2,a1=2,则通项an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个结论,其中正确的是(  )
A、“a=3”是“直线l1:a2x+3y-1=0与直线l2:x-3y+2=0垂直”的充要条件
B、随机变量ξ~N(0,1),若P(|ξ|≤1.96)=0.950,则P(ξ<-1.96)=0.05
C、对于命题P:?x∈R使得x2+x+1<0,则¬P:?x∈R均有x2+x+1>0
D、在区间[0,1]上随机取一个数x,则sin
π
2
x的值介于0到
1
2
之间的概率是
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x>1},B={x||x|<2 },则A∩B等于(  )
A、{x|-1<x<2}
B、{x|x>-1}
C、{x|-1<x<1}
D、{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z1=1-ai,z2=(2+i)2(i为虚数单位),若复数
z1
z2
在复平面内对应的点在直线5x-5y+3=0上,则a=(  )
A、6B、-6C、-22D、22

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,bcosC+
3
bsinC-a-c=0
(1)求角B的大小;
(2)若b=2,△ABC的面积为
3
,求△ABC的内切圆与外接圆面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的平均数为17,乙组数据的中位数为17,则xy=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-lnx,其中a∈R.
(Ⅰ)当a=1时,求f(x)在点(1,f(1))处切线l的方程,并判断l与f(x)的图象交点的个数;
(Ⅱ)若f(x)存在零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次射击训练,某小组的成绩只有7环、8环、9环三种情况,且该小组的平均成绩为8.15环,设该小组成绩为7环的有x人,成绩为8环、9环的人数情况见下表:那么x=
 

环数(环) 8 9
人数(人) 7 8

查看答案和解析>>

同步练习册答案