精英家教网 > 高中数学 > 题目详情

设椭圆C=1(a>b>0)的离心率e,右焦点到直线=1的距离dO为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于AB两点,证明,点O到直线AB的距离为定值,并求弦AB长度的最小值.

(1)=1(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定点和定直线,动点与定点的距离等于点到定直线的距离,记动点的轨迹为曲线.
(1)求曲线的方程.
(2)若以为圆心的圆与曲线交于不同两点,且线段是此圆的直径时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为的直线m交双曲线于M、N两点,期中,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角的表达式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C1=1,椭圆C2C1的短轴为长轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设直线l与椭圆C2相交于不同的两点AB,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,动点满足:点到定点与到轴的距离之差为.记动点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过点的直线交曲线两点,过点和原点的直线交直线于点,求证:直线平行于轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(ab>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点,焦点在坐标轴上的双曲线经过两点
(1)求双曲线的方程;
(2)设直线交双曲线两点,且线段被圆三等分,求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)若曲线是焦点在轴上的椭圆,求的取值范围;
(2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.

查看答案和解析>>

同步练习册答案