已知曲线:.
(1)若曲线是焦点在轴上的椭圆,求的取值范围;
(2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.
(1);(2)的值为.
解析试题分析:(1)曲线是焦点在轴上的椭圆,则求解不等式组即可得到参数的取值范围;(2)设的方程为(注意检验斜率不存在的情况是否符合要求),再设出两点的坐标,当,由即与联立可求解出点的坐标,然后再代入直线方程,即可求出的值.
试题解析:(1)若曲线:是焦点在轴上的椭圆,则有
解得 3分
(2)时,曲线的方程为,为椭圆
由题意知,点的直线的斜率存在,所以设的方程为
由消去得 5分
,当时,解得
设两点的坐标分别为
因为为直角,所以,即
整理得① 7分
又,②将①代入②,消去得
解得或(舍去)
将代入①,得,所以
故所求的值为 9分.
考点:1.椭圆的方程;2.直线与椭圆的位置关系;3.两直线垂直的条件.
科目:高中数学 来源: 题型:解答题
设椭圆C:=1(a>b>0)的离心率e=,右焦点到直线=1的距离d=,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明,点O到直线AB的距离为定值,并求弦AB长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设点、分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为.
(I)求椭圆的方程;
(II)设直线(直线、不重合),若、均与椭圆相切,试探究在轴上是否存在定点,使点到、的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的左、右焦点分别为、,椭圆上的点满足,且△的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为、,过点的动直线与椭圆相交于、两点,直线与直线的交点为,证明:点总在直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).
(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于、两点,若(为坐标原点),试判断直线与圆的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知是椭圆的右焦点;圆与轴交于两点,其中是椭圆的左焦点.
(1)求椭圆的离心率;
(2)设圆与轴的正半轴的交点为,点是点关于轴的对称点,试判断直线与圆的位置关系;
(3)设直线与圆交于另一点,若的面积为,求椭圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)如图,某隧道设计为双向四车道,车道总宽20m,要求通行车辆限高5m,隧道全长2.5km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆。
(1)若最大拱高h为6 m,则隧道设计的拱宽是多少?
(2)若要使隧道上方半椭圆部分的土方工程 量最小,则应如何设计拱高h和拱宽?(已知:椭圆+=1的面积公式为S=,柱体体积为底面积乘以高。)
(3)为了使隧道内部美观,要求在拱线上找两个点M、N,使它们所在位置的高度恰好是限高5m,现以M、N以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的倍,试确定M、N的位置以及的值,使总造价最少。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com