精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,直线与圆相切.
(1)求椭圆的方程;
(2)设直线与椭圆的交点为,求弦长.

(1);(2).

解析试题分析:(1)利用直线与圆相切,先求出的值,再结合椭圆的离心率求出的值,最终确定椭圆的方程;(2)先设点,联立直线与椭圆的方程,消去可得,然后根据二次方程根与系数的关系得到,最后利用弦长计算公式求解即可.
试题解析:(1)由直线与圆相切得 2分
             4分
∴椭圆方程为                   6分
(2)    8分
,设交点坐标分别为   9分
                   11分
从而
所以弦长                      14分.
考点:1.直线与圆的位置关系;2.椭圆的标准方程及其几何性质;3.直线与椭圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(ab>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点,焦点在坐标轴上的双曲线经过两点
(1)求双曲线的方程;
(2)设直线交双曲线两点,且线段被圆三等分,求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为
(1)求椭圆C的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点.
(1)若点中点,求直线的方程;
(2)设抛物线的焦点为,当时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4,
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A, B两点,若点M(, 0),求证为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)若曲线是焦点在轴上的椭圆,求的取值范围;
(2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上, ,求直线的方程.

查看答案和解析>>

同步练习册答案