已知椭圆的离心率为,直线与圆相切.
(1)求椭圆的方程;
(2)设直线与椭圆的交点为,求弦长.
科目:高中数学 来源: 题型:解答题
如图,点P(0,-1)是椭圆C1:=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:y=x+,圆O:x2+y2=5,椭圆E:=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆C的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4,
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A, B两点,若点M(, 0),求证为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com