精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于两点,若(为坐标原点),试判断直线与圆的位置关系,并证明你的结论.

(Ⅰ) (Ⅱ) 直线与圆相切

解析试题分析:(Ⅰ) 由题意得 ,又,结合,可解得的值,从而得椭圆的标准方程.(Ⅱ)设,则,当直线与轴垂直时,由椭圆的对称性易求两点的坐标,并判断直线与圆是否相切.当直线的不与轴垂直时,可设其方程为
,与椭圆方程联立方程组消法得: ,
  ,结合,可得的关系,由此可以判断与该直线与圆的位置关系.
试题解析:解(Ⅰ)由已知得,由题意得 ,又,              2分
消去可得,,解得(舍去),则
所以椭圆的方程为.                          4分
(Ⅱ)结论:直线与圆相切.
证明:由题意可知,直线不过坐标原点,设的坐标分别为 
(ⅰ)当直线轴时,直线的方程为 
 
    
解得,故直线的方程为 ,
因此,点到直线的距离为,又圆的圆心为,
半径 所以直线与圆相切  7分
(ⅱ)当直线不垂直于轴时,
设直线的方程为,联立直线和椭圆方程消去得;
 ,
 
 
  ,故
①                           10分
又圆的圆心为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(ab>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4,
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A, B两点,若点M(, 0),求证为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)若曲线是焦点在轴上的椭圆,求的取值范围;
(2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知线段MN的两个端点M、N分别在轴、轴上滑动,且,点P在线段MN上,满足,记点P的轨迹为曲线W.
(1)求曲线W的方程,并讨论W的形状与的值的关系;
(2)当时,设A、B是曲线W与轴、轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)的离心率为,右焦点为(,0).
(I)求椭圆的方程;
(Ⅱ)过椭圆的右焦点且斜率为k的直线与椭圆交于点A(xl,y1),B(x2,y2),若, 求斜率k是的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知过点的椭圆的右焦点为,过焦点且与轴不重合的直线与椭圆交于两点,点关于坐标原点的对称点为,直线分别交椭圆的右准线两点.

(1)求椭圆的标准方程;
(2)若点的坐标为,试求直线的方程;
(3)记两点的纵坐标分别为,试问是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上, ,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中是过抛物线焦点的两条弦,且其焦点,点轴上一点,记,其中为锐角.

(1)求抛物线方程;
(2)求证:

查看答案和解析>>

同步练习册答案