在平面直角坐标系中,已知过点的椭圆:的右焦点为,过焦点且与轴不重合的直线与椭圆交于,两点,点关于坐标原点的对称点为,直线,分别交椭圆的右准线于,两点.
(1)求椭圆的标准方程;
(2)若点的坐标为,试求直线的方程;
(3)记,两点的纵坐标分别为,,试问是否为定值?若是,请求出该定值;若不是,请说明理由.
(1),(2),(3).
解析试题分析:(1)求椭圆方程,基本方法是待定系数法.关键是找全所需条件. 椭圆中三个未知数的确定只需两个独立条件,根据椭圆定义:点到两个焦点距离和为,求出的值,再由求出的值,就可得到椭圆的标准方程(2)由点关于坐标原点的对称点为,可直接写出点坐标;又由点及,可得直线方程,再由方程与椭圆方程解出A点坐标,根据两点式就可写出直线的方程,(3)直线与椭圆位置关系问题就要从其位置关系出发,先根据直线AB垂直轴的特殊情况下探求的值,再利用点共线及点在椭圆上条件,逐步消元,直到定值.本题难点在如何利用条件消去参数. 点共线可得到坐标关系,而利用点差法得到斜率关系是解决本题的关键.
试题解析:(1)由题意,得,即, 2分
又,,椭圆的标准方程为. 5分
(2),,又, ,
直线:, 7分
联立方程组,解得, 9分
直线:,即. 10分
(3)当不存在时,易得,
当存在时,设,,则,
,,两式相减, 得,
,令,则, 12分
直线方程:,,
,直线方程:,, 14分
,又,
科目:高中数学 来源: 题型:解答题
已知椭圆:的左、右焦点分别为、,椭圆上的点满足,且△的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为、,过点的动直线与椭圆相交于、两点,直线与直线的交点为,证明:点总在直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于、两点,若(为坐标原点),试判断直线与圆的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知是椭圆的右焦点;圆与轴交于两点,其中是椭圆的左焦点.
(1)求椭圆的离心率;
(2)设圆与轴的正半轴的交点为,点是点关于轴的对称点,试判断直线与圆的位置关系;
(3)设直线与圆交于另一点,若的面积为,求椭圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的离心率为,长轴长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线交椭圆C于A、B两点,试问:在y轴正半轴上是否存在一个定点M满足,若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆C:,若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.
(I)求椭圆C的方程;
(II)已知斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,点Q满足且=0,其中N为椭圆的下顶点,求直线在y轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com