已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.
(Ⅰ);(2)四边形不可能为梯形,理由详见解析.
解析试题分析:(Ⅰ)(Ⅰ)直线过点,且斜率为k,所以直线方程可设为,若焦点在直线的下方,则满足不等式,代入求的范围;(Ⅱ)设直线的方程为,,分别与抛物线联立,因为直线和抛物线的一个交点坐标已知,故可利用韦达定理求出切点的横坐标,则可求在点处的切线斜率,若四边形是否为梯形,则有得或,根据斜率相等列方程,所得方程无解,故四边形不是梯形.
试题解析:(Ⅰ)解:抛物线的焦点为.由题意,得直线的方程为,
令,得,即直线与y轴相交于点.因为抛物线的焦点在直线的下方,
所以,解得,因为,所以.
(Ⅱ)解:结论:四边形不可能为梯形.理由如下:
假设四边形为梯形.由题意,设,,,
联立方程,消去y,得,由韦达定理,得,所以.
同理,得.对函数求导,得,所以抛物线在点处的切线的斜率为,抛物线在点处的切线的斜率为.
由四边形为梯形,得或.
若,则,即,因为方程无解,所以与不平行.
若,则,即,因为方程无解,所以与不平行.所以四边形不是梯形,与假设矛盾.因此四边形不可能为梯形.
考点:1、直线的方程;2、直线和抛物线的位置关系;3、导数的几何意义.
科目:高中数学 来源: 题型:解答题
已知线段MN的两个端点M、N分别在轴、轴上滑动,且,点P在线段MN上,满足,记点P的轨迹为曲线W.
(1)求曲线W的方程,并讨论W的形状与的值的关系;
(2)当时,设A、B是曲线W与轴、轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的
对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知过点的椭圆:的右焦点为,过焦点且与轴不重合的直线与椭圆交于,两点,点关于坐标原点的对称点为,直线,分别交椭圆的右准线于,两点.
(1)求椭圆的标准方程;
(2)若点的坐标为,试求直线的方程;
(3)记,两点的纵坐标分别为,,试问是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左、右焦点分别为、,为原点.
(1)如图1,点为椭圆上的一点,是的中点,且,求点到轴的距离;
(2)如图2,直线与椭圆相交于、两点,若在椭圆上存在点,使四边形为平行四边形,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,右焦点为,右顶点在圆:上.
(Ⅰ)求椭圆和圆的方程;
(Ⅱ)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为0的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com