精英家教网 > 高中数学 > 题目详情

已知椭圆的左、右焦点分别为,椭圆上的点满足,且△的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线上.

(Ⅰ)椭圆的方程为;(Ⅱ)详见解析.

解析试题分析:(Ⅰ)由焦点坐标知:.又椭圆上的点满足,由可求得,再由勾股定理可求得,从而求得.再由求得,从而得椭圆的方程.(Ⅱ)首先考虑轴垂直的情况,此时可求出直线与直线的交点为的方程是:,代入验证知点在直线上.当直线不与轴垂直时,设直线的方程为,点,则,要证明共线,只需证明,即证明.
,显然成立;若, 即证明
,这显然用韦达定理.
试题解析:(Ⅰ)由题意知:,                 1分
椭圆上的点满足,且


                      2分
                      3分
椭圆的方程为.                     4分
(Ⅱ)由题意知
(1)当直线轴垂直时,,则的方程是:
的方程是:,直线与直线的交点为
∴点在直线上.                          6分
(2)当直线不与轴垂直时,设直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C1=1,椭圆C2C1的短轴为长轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设直线l与椭圆C2相交于不同的两点AB,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为
(1)求椭圆C的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4,
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A, B两点,若点M(, 0),求证为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶在坐标原点,焦点到直线的距离是
(1)求抛物线的方程;
(2)若直线与抛物线交于两点,设线段的中垂线与轴交于点 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)若曲线是焦点在轴上的椭圆,求的取值范围;
(2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知线段MN的两个端点M、N分别在轴、轴上滑动,且,点P在线段MN上,满足,记点P的轨迹为曲线W.
(1)求曲线W的方程,并讨论W的形状与的值的关系;
(2)当时,设A、B是曲线W与轴、轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知过点的椭圆的右焦点为,过焦点且与轴不重合的直线与椭圆交于两点,点关于坐标原点的对称点为,直线分别交椭圆的右准线两点.

(1)求椭圆的标准方程;
(2)若点的坐标为,试求直线的方程;
(3)记两点的纵坐标分别为,试问是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)点P为圆上一个动点,M为点P在y轴上的投影,动点Q满足
(1)求动点Q的轨迹C的方程;
(2)一条直线l过点,交曲线C于A、B两点,且A、B同在以点D(0,1)为圆心的圆上,求直线l的方程。

查看答案和解析>>

同步练习册答案