精英家教网 > 高中数学 > 题目详情
10.在△ABC中,已知角A,B,C所对的边分别为a,b,c,且c(acosB-bcosA)=b2,则$\frac{sinA}{sinB}$=$\sqrt{2}$.

分析 由条件利用正弦定理和余弦定理求得要求式子的值.

解答 解:△ABC中,∵c(acosB-bcosA)=b2,故由余弦定理可得 ac•$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$-bc•$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=b2
化简可得$\frac{{a}^{2}}{{b}^{2}}$=2,∴$\frac{a}{b}$=$\sqrt{2}$.
再利用正弦定理可得$\frac{sinA}{sinB}$=$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题主要考查正弦定理和余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\frac{{4\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{6}$B.$\frac{{8\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{3}$C.$\frac{{4\sqrt{3}}}{3}+\frac{{4\sqrt{3}π}}{3}$D.$4\sqrt{3}+\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E的中心在坐标原点O,它的长轴长,短轴长分别为2a,2$\sqrt{2}$,右焦点F(c,0),直线l:cx-a2=0与x轴相交于点A,$\overrightarrow{OF}=2\overrightarrow{FA}$,过点A的直线m与椭圆E交于P,Q两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若以线段PQ为直径的圆过原点O,求直线m的方程;
(Ⅲ)设$\overrightarrow{AP}=λ\overrightarrow{AQ}({λ>1})$,过点P且平行于直线l的直线与椭圆E相交于另一点M,求证:$\overrightarrow{FM}=-λ\overrightarrow{FQ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不可能以直线$y=\frac{1}{2}x+b$作为切线的曲线是(  )
A.y=sinxB.$y=\frac{1}{x}$C.y=lnxD.y=ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等比数列f'(x)满足:an>0,a1=5,Sn为其前n项和,且20S1,S3,7S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log5a2+log5a4+…+log5a2n+2,求数列{$\frac{1}{b_n}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.点M(1,1)到抛物线y=ax2的准线的距离为2,则a=(  )
A.$\frac{1}{4}$或$-\frac{1}{12}$B.$-\frac{1}{12}$C.$\frac{1}{4}$D.4或-12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=lnx-x2+ax(a∈R).
(1)若函数f(x)在(0,e]上不是单调函数,求实数a的取值范围;
(2)设函数f(x)的图象在x=x0处的切线为l,证明:f(x)的图象上不存在位于直线l上方的点;
(3)设g(x)=xe1-x,若对于任意给定的x1∈(0,e],方程f(x)+1=g(x1)在(0,e]上有两个不同的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求过点(2$\sqrt{3}$,2)、($\sqrt{6}$,$\frac{\sqrt{2}}{2}$)的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.以AB为直径的圆内有一内接梯形ABCD,且AB∥CD,以A,B为焦点的椭圆恰好过C,D两点,当梯形ABCD的周长最大时,此椭圆的离心率为$\sqrt{3}$-1.

查看答案和解析>>

同步练习册答案