精英家教网 > 高中数学 > 题目详情
8.已知f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-2x,x>0\end{array}$,则f(f(0))=-2.

分析 求出f(0)=1,从而f(f(0))=f(1),由此能求出结果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-2x,x>0\end{array}$,
∴f(0)=02+1=1,
f(f(0))=f(1)=-2×1=-2.
故答案为:-2.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},则(A∩B)∪C=(
A.{3}B.{3,7,8}C.{1,3,7,8}D.{1,3,6,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各函数中,表示同一函数的是(  )
A.y=lgx与$y=\frac{1}{2}lgx{\;}^2$B.$y=\frac{{{x^2}-1}}{x-1}$与y=x+1
C.$y=\sqrt{x^2}-1$与y=x-1D.y=x与$y={log_a}{a^x}$(a>0且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.销售甲、乙两种商品所得利润分别是y1,y2万元,它们与投入资金x万元的关系分别为y1=m$\sqrt{x+1}$+a,y2=bx,(其中m,a,b都为常数),函数y1,y2对应的曲线C1,C2如图所示.
(1)求函数y1与y2的解析式;
(2)若该商场一共投资10万元经销甲、乙两种商品,求该商场所获利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,既是奇函数又是减函数的为(  )
A.y=x+1B.y=-x2C.$y=\frac{1}{x}$D.y=-x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)8${\;}^{-\frac{1}{3}}}$+(-$\frac{5}{9}$)0-$\sqrt{{{(e-3)}^2}}$;
(2)$\frac{1}{2}$lg25+lg2-log29×log32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}的首项a1=1,an+1=an+2n,则a5=(  )
A.$\frac{45}{2}$B.20C.21D.31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,a1=3,且2Sn=an+1+2n.
(1)求a2
(2)求数列{an}的通项公式an
(3)令bn=(2n-1)(an-1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的奇函数,且x>0时,f(x)=log2(x+1)+3x,则满足f(x)>-4的实数x的取值范围是(  )
A.(-2,2)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案