精英家教网 > 高中数学 > 题目详情

【题目】一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售量落入各组区间频率视为概率.

日销售量(枝)

销售天数

3天

5天

13天

6天

3天

(1)试求这30天中日销售量低于100枝的概率;

(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.

【答案】(1);(2)

【解析】试题分析: (1)设月销量为,分别计算出的概率,相加即可;(2)日销售量低于100枝共有8天,从中任选两天促销共有种情况; 日销售量低于50枝共有3天,从中任选两天促销共有种情况,根据古典概率计算即可.

试题解析:(1)设月销量为,则

(2)日销售量低于100枝共有8天,从中任选两天促销共有种情况;日销售量低于50枝共有3天,从中任选两天促销共有种情况.

由古典概型公式得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an
(2)若数列{an}为等差数列,且A=1,C=﹣2. ①设bn=2nan , 求数列{bn}的前n项和;
②设cn= ,若不等式cn 对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.

1)求椭圆的标准方程;

2)设,过椭圆左焦点的直线两点,若对满足条件的任意直线,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,由甲、乙两人这几场比赛得分的中位数之和是(
A.65
B.64
C.63
D.62

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点为椭圆上一点. 的重心为,内心为,且,则该椭圆的离心率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据

房屋面积(平方米)

115

110

80

135

105

销售价格(万元)

24.8

21.6

18.4

29.2

22


(1)画出散点图
(2)求线性回归方程
(3)根据(2)的结果估计房屋面积为150平方米时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用AB两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.

(Ⅰ)根据频率分布直方图填写下面2×2列联表;

甲班(A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

,求函数的极值;

设函数,求函数的单调区间;

若在区间不存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间与极值;

(2)当时,令,若上有两个零点,求实数的取值范围;

(3)当时,函数的图像上所有点都在不等式组所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

同步练习册答案