精英家教网 > 高中数学 > 题目详情
各项都是正数的等比数列{an}的公比q≠1,且a2
1
2
a3,a1成等差数列,则
a3+a4+a5
a4+a5+a6
的值为(  )
A、
1-
5
2
B、
5
+1
2
C、
5
-1
2
D、
5
+1
2
5
-1
2
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:利用等比数列求出a2
1
2
a3,通过a2
1
2
a3,a1成等差数列,求出公比q,然后求解
a3+a4+a5
a4+a5+a6
的值.
解答: 解:由题意可得a2=qa1
1
2
a3=
1
2
a1q2
∵a2
1
2
a3,a1成等差数列,
∴a1q2=qa1+a1.各项都是正数的等比数列{an}的公比q
解得q=
5
+1
2

a3+a4+a5
a4+a5+a6
=
a3+a4+a5
q(a3+a4+a7)
=
1
q
=
1
5
+1
2
=
5
-1
2

故选:C.
点评:本题考查等差数列与等比数列的综合应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆锥侧面展开图是半径为a的半圆,这个圆锥的高是(  )
A、a
B、
1
2
2
a
C、
3
a
D、
1
2
3
a

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E、F是椭圆G:
x2
4
+
y2
3
=1的左、右焦点,P为椭圆上一动点,在△PEF中∠EPF的平分线PN交x轴于点N,作FM⊥PN,垂足为M,则|OM|的取值范围是(  )
A、(0,1]
B、[-1,1]
C、[0,
6
6
]
D、[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1经过点A(-3,0),B(3,2),直线l2经过点B,且与x轴交于点C,l1⊥l2
(1)求直线l1,l2的方程;
(2)求△ABC外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1,M是PB的任意一点
(1)证明面PAD⊥面PCD;
(2)若直线MC与面PCD所成角的余弦值为
3
10
10
,试求定点M的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是一个几何体的三视图,正视图和侧视图都是由一个边长为2的等边三角形和一个长为2宽为1的矩形组成.
(1)求此几何体的表面积;(2)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx-(2m-1)lnx+n.
(Ⅰ)若f(x)在点(1,f(1))处的切线方程为y=x,求实数m、n的值;
(Ⅱ)当m>0时,讨论f(x)的单调性;
(Ⅲ)当m=1时,f(x)在区间(
1
e
,e)上恰有一个零点,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
是以点A(3,-1)为起点,且与向量
b
=(-3,4)平行的单位向量,则向量
a
的终点坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an},前n项和为Sn,a1+a2=
3
4
,a4+a5=6,则a6=
 

查看答案和解析>>

同步练习册答案