精英家教网 > 高中数学 > 题目详情
如图,是一个几何体的三视图,正视图和侧视图都是由一个边长为2的等边三角形和一个长为2宽为1的矩形组成.
(1)求此几何体的表面积;(2)求此几何体的体积.
考点:棱柱、棱锥、棱台的体积,由三视图求面积、体积
专题:空间位置关系与距离
分析:由几何体的三视图知:该几何体是一个侧棱长为2,底面直径为2的圆锥和高为1直径为2的圆柱的组合体,由此能求出此几何体的表面积和体积.
解答: 解:(1)由几何体的三视图知:
该几何体是一个侧棱长为2,底面直径为2的圆锥和高为1直径为2的圆柱的组合体,
∴此几何体的表面积S=2π×1+2π=4π.
(2)此几何体的体积:
V=π×1+
1
3
π×
4-1
=(
3
3
+1)π.
点评:本题考查几何体的表面积和体积的求法,是中档题,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1的离心率为2,则其渐近线的斜率为(  )
A、±
5
B、±
3
C、±
3
3
D、±
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,下面阴影部分的面积是
 
(结果保留π)

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-3≤0
x-y+1≥0
x≥0,y≥0
,若目标函数z=
y+m
x-4
的最大值为2,则z的最小值为(  )
A、
1
2
B、
3
2
C、
5
4
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

各项都是正数的等比数列{an}的公比q≠1,且a2
1
2
a3,a1成等差数列,则
a3+a4+a5
a4+a5+a6
的值为(  )
A、
1-
5
2
B、
5
+1
2
C、
5
-1
2
D、
5
+1
2
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,设曲线y=
1
x
上的点与x轴上的点顺次构成等腰直角三角形OB1A1,A1B2A2,…,直角顶点在曲线y=
1
x
上,则x轴上的点An(n=1,2,3,…,n,…)的横坐标依次组成的数列为{xn},则数列{xn}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,点M(1,0)关于y轴的对称点为N,直线l过点M交抛物线于A,B两点,
(1)证明:直线NA,NB的斜率互为相反数;
(2)求△ANB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司招收男职员x名,女职员y名,须满足约束条件
2x-4y≥-7
2x-11≤0
2x+3y-9≥0
则10x+10y的最大值是(  )
A、80B、85C、90D、100

查看答案和解析>>

科目:高中数学 来源: 题型:

F是抛物线y2=2px(p>0)的焦点,P是抛物线上一点,FP延长线交y轴于Q,若P恰好是FQ的中点,则|PF|=
 

查看答案和解析>>

同步练习册答案