精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=2x-2lnx,求函数在点(1,f(1))处的切线方程.

分析 由f(x)=2x-2lnx,知f(1)=2,求出函数的导数,k=f′(1)=0,由此能求出f(x)在x=1处的切线方程.

解答 解:∵f(x)=2x-lnx,
∴f(1)=2,
f′(x)=2-$\frac{2}{x}$,
∴k=f′(1)=0,
∴f(x)在x=1处的切线方程为y-2=0(x-1),即y=2.
故答案为:y=2.

点评 本题考查函数的切线方程的求法,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过$\sqrt{3}$km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是(  )
A.1-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.1-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sin(3x+$\frac{π}{4}$),x∈R
(1)求f(-$\frac{7}{12}π$)的值及f(x)设为最小正周期T;
(2)若$α∈(0,\frac{π}{2})$,f($\frac{α}{3}$)=2cos($α+\frac{π}{4}$),求f($\frac{2}{3}α$-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,设$\overrightarrow{a}$-4$\overrightarrow{b}$与$\overrightarrow{a}$+2$\overrightarrow{b}$的夹角为θ,试求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y=ax2(a>0)上两个动点A、B(不在原点),满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,若存在定点M,使得$\overrightarrow{OM}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1,则M坐标为 (  )
A.({0,-a})B.({0,a})C.($\frac{1}{a}$,0})D.(0,$\frac{1}{a}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=(2x2+ax)•ex的单调递减区间为(-3,-$\frac{1}{2}$),则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.抛物线y2=4x上与焦点的距离等于5的点的横坐标是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,A=$\frac{π}{3}$,BC=3,求△ABC的周长的取值范围.

查看答案和解析>>

同步练习册答案