精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是正方形,EA⊥平面ABCD,EA∥PD,AD=PD=2EA,F,G,H分别为PB,EB,PC的中点.
(1)求证:FG∥平面PED;
(2)求平面FGH与平面PBC所成锐二面角的大小.
考点:用空间向量求平面间的夹角,直线与平面平行的判定,与二面角有关的立体几何综合题
专题:综合题,空间位置关系与距离,空间角,空间向量及应用
分析:(1)利用三角形的中位线的性质证明FG∥PE,再根据直线和平面平行的判定定理证得结论;
(2)建立空间直角坐标系,根据两个平面的法向量所成的角与二面角相等或互补,由两个平面法向量所成的角求解二面角的大小
解答: (1)证明:∵F,G分别为PB,BE的中点,
∴FG∥PE,
∵FG?平面PED,PE?平面PED,
∴FG∥平面PED;
(2)解:∵EA⊥平面ABCD,EA∥PD,
∴PD⊥平面ABCD,
∵AD,CD?平面ABCD,
∴PD⊥AD,PD⊥CD.
∵四边形ABCD是正方形,
∴AD⊥CD.
以D为原点,建立如图所示的空间直角坐标系,设EA=1   
∵AD=PD=2EA,
∴D(0,0,0),P(0,0,2),A(2,0,0),C(0,2,0),B(2,2,0),E(2,0,1),
PB
=(2,2,-2),
PC
=(0,2,-2).
∵F,G,H分别为PB,EB,PC的中点,
∴F(1,1,1),G(2,1,0.5),H(0,1,1),
GF
=(-1,0,0.5),
GH
=(-2,0,0.5)
n1
=(x,y,z)为平面FGH的一个法向量,则
-x+0.5z=0
-2x+0.5z=0

n1
=(0,1,0)
同理可得平面PBC的一个法向量为
n2
=(0,1,1),
∴cos<
n1
n2
>=|
n1
n2
|
n1
||
n2
|
|=
2
2

∴平面FGH与平面PBC所成锐二面角的大小为45°.
点评:本题考查了线面平行的判定,考查了面面角,训练了利用平面法向量求解二面角的大小,解答此类问题的关键是正确建系,准确求用到的点的坐标,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)已知如图,四边形ABCD是矩形,PA⊥面ABCD,其中AB=3,PA=4.若在PD上存在一点E,使得BE⊥CE.
(Ⅰ)求线段AD长度的取值范围;
(Ⅱ)若满足条件的E点有且只有一个,求二面角E-BC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)经过点T(
2
,-
6
2
)
,其离心率为
1
2
,右顶点为A,右焦点为F(c,0),直线x=
a2
c
与x轴交于B,过点F的直线l与椭圆交于不同的两点M、N,点P为点M关于直线x=
a2
c
的对称点.
(1)求椭圆C的方程;
(2)求证:N、B、P三点共线;
(3)求△BNM的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin(2x+
π
6
),sinx),
n
=(1,sinx),f(x)=
m
n
-
1
2

(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=2
3
f(
A
2
)=
1
2
,若
3
sin(A+C)=2cosC,求b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+1)2+y2=16,点C2(1,0),点Q在圆C1上运动,QC2的垂直平分线交QC1于点H.
(Ⅰ)求动点H的轨迹C的方程;
(Ⅱ)若曲线C与x轴交于A、B两点,过点C1的直线交曲线C于M、N两点,记△ABM与△ABN的面积分别为S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若AB=CB=2,A1C=
6
,求二面角B-AC=A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,多面体ABCDEF中,BA,BC,BE两两垂直,且AB∥EF,CD∥BE,AB=BE=2,BC=CD=EF=1.
(Ⅰ)若点G在线段AB上,且BG=3GA,求证:CG∥平面ADF;
(Ⅱ)求直线DE与平面ADF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆x2+y2=1上一点Q作圆的一点切线L,则L和抛物线y=
1
4
x2+1有公共点的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正六边形ABCDEF的两个顶点A、D为双曲线的焦点,其余四个顶点都在双曲线上,则该双曲线的离心率为
 

查看答案和解析>>

同步练习册答案