精英家教网 > 高中数学 > 题目详情
设f(x)=
x2|x|≥1
x|x<1
,g(x)是二次函数,若f[g(x)]的值域是[0,+∞),则g(x)的值域是
 
分析:根据函数解析式,将区间分解为(-∞,-1]、(-1,1)、[1,+∞)三部分,在坐标系中作出函数的图象,再由图象观察其纵坐标的取值,可以得出g(x)的值域.
解答:解:在坐标系中作出函数f(x)=
x2  x≥1或x≤-1
x     -1<x<1
的图象,
精英家教网
观察图象可知,当纵坐标在[0,+∞)上时,横坐标在(-∞,-1]∪[0,+∞]上变化,
f(x)的值域是(-1,+∞),而f(g(x))的值域是[0,+∞),
∵g(x)是二次函数
∴g(x)的值域是[0,+∞).
故答案为:[0,+∞).
点评:本题以二次函数、一次函数为载体,考查了分段函数的值域,属于中档题.根据解析式作出函数图象,再由图象来求解,利用数形结合思想使本题变得通俗易懂.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

24、(附加题-选做题)(不等式证明选讲)设f(x)=x2-x+l,实数a满足|x-a|<l,求证:|f (x)-f (a)|<2(|a|+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-2ax+2,(a∈R)
(1)当x∈R时,f(x)≥a恒成立,求a的范围;
(2)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-x+k,log2f(a)=2,f(log2a)=k,(a≠1)
(1)求f(x)
(2)求f(log2x)的最小值及相应的x值.
(3)x取何值时f(log2x)>f(1)且log2f(x)<f(1).

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-πx,α=arcsin
1
3
,β=arctan
5
4
,γ=arcos(-
1
3
),δ=arccot(-
5
4
),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-x-alnx
(1)当a=1时,求f(x)的单调区间;
(2)若f(x)在[2,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

同步练习册答案