精英家教网 > 高中数学 > 题目详情
若关于x,y的不等式组
x+y-2<0
x+a>0
y-a>0
所表示的平面区域内存在点P(x0,y0)满足x0+2y0<1,则实数a的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:由约束条件作出可行域,要使平面区域内存在点P(x0,y0)满足x0+2y0<1,则
-a+2a<1
-a+a-2<0
,求解不等式组得答案.
解答: 解:由约束条件
x+y-2<0
x+a>0
y-a>0
作出可行域如图,

由图可知,要使平面区域内存在点P(x0,y0)满足x0+2y0<1,
-a+2a<1
-a+a-2<0
,解得a<1.
故答案为:a<1.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(3x-2)=x-1(x∈[0,2]),将函数y=f(x)的图象向右平移2个单位,再向上平移3个单位可得函数y=g(x)的图象.
(1)求函数y=f(x)与y=g(x)的解析式;
(2)设h(x)=[g(x)]2+g(x2),试求函数y=h(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在实数集R 上是增函数的是(  )
A、y=x
B、y=x2
C、y=-x2
D、y=4-x

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,在x轴负半轴上有一点B,满足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求椭圆C的离心率;
(Ⅱ)D是过A、B、F2三点的圆上的点,D到直线l:x-
3
y-3=0的最大距离等于椭圆长轴的长,求椭圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,线段MN的中垂线与x轴相交于点P(m,0),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+3(x≤1)
-x2+2x+3(x>1)
,g(x)=3x,这两个函数图象的交点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-2,公差d=3;数列{bn}中,Sn为其前n项和,满足:2nSn+1=2n(n∈N+
(Ⅰ)记An=
1
anan+1
,求数列An的前n项和S;
(Ⅱ)求证:数列{bn}是等比数列;
(Ⅲ)设数列{cn}满足cn=anbn,Tn为数列{cn}的前n项积,若数列{xn}满足x1=c2-c1,且xn=
Tn+1Tn-1-
T
2
n
TnTn-1
(n∈N+,n≥2)
,求数列{xn}的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
cos2x-2sin2
π
4
-x)-
3

(1)求f(x)的单调递增区间;
(2)求函数f(x)在区间[0,
π
6
]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x与y=x2-2x围成区域的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|x=2n,n∈Z},B={y|y=4k,k∈Z},则A与B的关系为(  )
A、A?BB、A?B
C、A=BD、A∈B

查看答案和解析>>

同步练习册答案