ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬a1=-2£¬¹«²îd=3£»ÊýÁÐ{bn}ÖУ¬SnΪÆäǰnÏîºÍ£¬Âú×㣺2nSn+1=2n£¨n¡ÊN+£©
£¨¢ñ£©¼ÇAn=
1
anan+1
£¬ÇóÊýÁÐAnµÄǰnÏîºÍS£»
£¨¢ò£©ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨¢ó£©ÉèÊýÁÐ{cn}Âú×ãcn=anbn£¬TnΪÊýÁÐ{cn}µÄǰnÏî»ý£¬ÈôÊýÁÐ{xn}Âú×ãx1=c2-c1£¬ÇÒxn=
Tn+1Tn-1-
T
2
n
TnTn-1
(n¡ÊN+£¬n¡Ý2)
£¬ÇóÊýÁÐ{xn}µÄ×î´óÖµ£®
¿¼µã£ºÊýÁеÄÇóºÍ,ÊýÁеĺ¯ÊýÌØÐÔ,µÈ±È¹ØÏµµÄÈ·¶¨
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨I£©ÀûÓõȲîÊýÁеÄͨÏʽ¿ÉµÃan=3n-5£®ÀûÓÃÁÑÏî¿ÉµÃAn=
1
3
(
1
3n-5
-
1
3n-2
)
£¬ÀûÓá°ÁÑÏîÇóºÍ¡±¿ÉµÃÊýÁÐAnµÄǰnÏîºÍS£®
£¨II£©ÓÉ2nSn+1=2n£¨n¡ÊN+£©£¬¿ÉµÃSn=1-
1
2n
£®µ±n=1ʱ£¬b1=S1=
1
2
£»µ±n¡Ý2ʱ£¬bn=Sn-Sn-1£®ÀûÓõȱÈÊýÁеÄͨÏʽ¼´¿ÉÖ¤Ã÷£®
£¨III£©ÊýÁÐ{cn}Âú×ãcn=anbn=
3n-5
2n
£®ÊýÁÐ{xn}Âú×ãx1=c2-c1=
5
4
£®µ±n¡Ý2ʱ£¬xn=
Tn+1
Tn
-
Tn
Tn-1
=cn+1-cn=
8-3n
2n+1
£®µ±n¡Ü3ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝ¼õ£»µ±n¡Ý4ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝÔö£¬µ«ÊÇxn£¼0£¬¼´¿ÉµÃ³ö£®
½â´ð£º £¨I£©½â£º¡ßµÈ²îÊýÁÐ{an}ÖУ¬a1=-2£¬¹«²îd=3£¬
¡àan=-2+3£¨n-1£©=3n-5£®
¡àAn=
1
anan+1
=
1
(3n-5)(3n-2)
=
1
3
(
1
3n-5
-
1
3n-2
)
£¬
¡àÊýÁÐAnµÄǰnÏîºÍS=
1
3
[(-
1
2
-1)+(1-
1
4
)
+(
1
4
-
1
7
)
+¡­+(
1
3n-5
-
1
3n-2
)]

=
1
3
(-
1
2
-
1
3n-2
)

=-
n
6n-4
£®
£¨II£©Ö¤Ã÷£ºÓÉ2nSn+1=2n£¨n¡ÊN+£©£¬¿ÉµÃSn=1-
1
2n
£®
µ±n=1ʱ£¬a1=S1=
1
2
£»
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=(1-
1
2n
)-(1-
1
2n-1
)
=
1
2n
£®
µ±n=1ʱҲ³ÉÁ¢£®
¡àbn=
1
2n
=
1
2
¡Á(
1
2
)n-1
£®
¡àÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬Ê×ÏîΪ
1
2
£¬¹«±ÈΪ
1
2
£®
£¨III£©ÊýÁÐ{cn}Âú×ãcn=anbn=
3n-5
2n
£®
ÊýÁÐ{xn}Âú×ãx1=c2-c1=
1
22
-
-2
2
=
5
4
£®
µ±n¡Ý2ʱ£¬xn=
Tn+1Tn-1-
T
2
n
TnTn-1
=
Tn+1
Tn
-
Tn
Tn-1
=cn+1-cn=
3n-2
2n+1
-
3n-5
2n
=
8-3n
2n+1
£®
µ±n=1ʱҲ³ÉÁ¢£®
µ±n¡Ü3ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝ¼õ£»µ±n¡Ý4ʱ£¬ÊýÁÐ{xn}µ¥µ÷µÝÔö£¬µ«ÊÇxn£¼0£®
¡àÊýÁÐ{xn}µÄ×î´óÖµÊÇx1=
5
4
£®
µãÆÀ£º±¾Ì⿼²éÁ˵ÝÍÆÊ½µÄÒâÒå¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¡¢¡°ÁÑÏîÇóºÍ¡±¡¢ÊýÁеĵ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô²»µÈʽ£¨x-1£©2£¼logaxÔÚx¡Ê£¨0£¬1£©ÄÚºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£º¡÷ABCÖУ¬ÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬Èôa=2£¬¡ÏA=60¡ã£¬S¡÷ABC=
3
£¬Ôòb+c=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©¶ÔÓÚÒ»ÇÐx£¬y¡ÊR£¬¶¼ÓÐf£¨x+y£©=f£¨x£©+f£¨y£©ÇÒf£¨x£©ÔÚRÉÏΪ¼õº¯Êý£¬µ±x£¾0ʱ£¬f£¨x£©£¼0£¬f£¨1£©=-2
£¨1£©Çóf£¨0£©£¬f£¨2£©µÄÖµ£®    
£¨2£©Åж¨º¯ÊýµÄÆæÅ¼ÐÔ£®
£¨3£©Èôf£¨x2-2x+3£©£¼f£¨x2+x£©£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô¹ØÓÚx£¬yµÄ²»µÈʽ×é
x+y-2£¼0
x+a£¾0
y-a£¾0
Ëù±íʾµÄÆ½ÃæÇøÓòÄÚ´æÔÚµãP£¨x0£¬y0£©Âú×ãx0+2y0£¼1£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÈý´Îº¯Êýf£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬¸ø³ö¶¨Ò壺Éèf¡ä£¨x£©ÊǺ¯Êýy=f£¨x£©µÄµ¼Êý£¬f¡å£¨x£©ÊÇf¡ä£¨x£©µÄµ¼Êý£¬Èô·½³Ìf¡å£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æµã£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£®¾­¹ý̽¾¿·¢ÏÖ£ºÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓС°¹Õµã¡±£»ÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓжԳÆÖÐÐÄ£¬ÇÒ¡°¹Õµã¡±¾ÍÊǶԳÆÖÐÐÄ£®É躯Êýg£¨x£©=
1
3
x3-
1
2
x2+3x-
5
12
£¬Ôòg£¨
1
2014
£©+g£¨
2
2014
£©+¡­+g£¨
2013
2014
£©£¨¡¡¡¡£©
A¡¢2011B¡¢2012
C¡¢2013D¡¢2014

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôsin¦Á=-
2
2
£¬ÇÒcos£¨¦Á-¦Â£©=
1
2
£¨¦Â£¾0£©£¬ÔòÂú×ãÉÏÊöÌõ¼þµÄ¦ÂµÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

»¯¼ò£º
£¨1£©£¨1+tan2¦Á£©cos2¦Á£»
£¨2£©
1+sin¦Á
1-sin¦Á
-
1-sin¦Á
1+sin¦Á
£¬ÆäÖЦÁΪµÚ¶þÏóÏ޽ǣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôx£¬y¡ÊR+£¬x+y=1£¬Ôòx•yÓУ¨¡¡¡¡£©
A¡¢×îСֵ
1
2
B¡¢×î´óÖµ
1
2
C¡¢×îСֵ
1
4
D¡¢×î´óÖµ
1
4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸