¿¼µã£ºÊýÁеÄÇóºÍ,ÊýÁеĺ¯ÊýÌØÐÔ,µÈ±È¹ØÏµµÄÈ·¶¨
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨I£©ÀûÓõȲîÊýÁеÄͨÏʽ¿ÉµÃa
n=3n-5£®ÀûÓÃÁÑÏî¿ÉµÃA
n=
(-)£¬ÀûÓá°ÁÑÏîÇóºÍ¡±¿ÉµÃÊýÁÐA
nµÄǰnÏîºÍS£®
£¨II£©ÓÉ2
nS
n+1=2
n£¨n¡ÊN
+£©£¬¿ÉµÃ
Sn=1-£®µ±n=1ʱ£¬b
1=S
1=
£»µ±n¡Ý2ʱ£¬b
n=S
n-S
n-1£®ÀûÓõȱÈÊýÁеÄͨÏʽ¼´¿ÉÖ¤Ã÷£®
£¨III£©ÊýÁÐ{c
n}Âú×ãc
n=a
nb
n=
£®ÊýÁÐ{x
n}Âú×ãx
1=c
2-c
1=
£®µ±n¡Ý2ʱ£¬x
n=
-=c
n+1-c
n=
£®µ±n¡Ü3ʱ£¬ÊýÁÐ{x
n}µ¥µ÷µÝ¼õ£»µ±n¡Ý4ʱ£¬ÊýÁÐ{x
n}µ¥µ÷µÝÔö£¬µ«ÊÇx
n£¼0£¬¼´¿ÉµÃ³ö£®
½â´ð£º
£¨I£©½â£º¡ßµÈ²îÊýÁÐ{a
n}ÖУ¬a
1=-2£¬¹«²îd=3£¬
¡àa
n=-2+3£¨n-1£©=3n-5£®
¡àA
n=
=
=
(-)£¬
¡àÊýÁÐA
nµÄǰnÏîºÍS=
[(--1)+(1-)+
(-)+¡+
(-)]=
(--)=-
£®
£¨II£©Ö¤Ã÷£ºÓÉ2
nS
n+1=2
n£¨n¡ÊN
+£©£¬¿ÉµÃ
Sn=1-£®
µ±n=1ʱ£¬a
1=S
1=
£»
µ±n¡Ý2ʱ£¬b
n=S
n-S
n-1=
(1-)-(1-)=
£®
µ±n=1ʱҲ³ÉÁ¢£®
¡à
bn==
¡Á()n-1£®
¡àÊýÁÐ{b
n}ÊǵȱÈÊýÁУ¬Ê×ÏîΪ
£¬¹«±ÈΪ
£®
£¨III£©ÊýÁÐ{c
n}Âú×ãc
n=a
nb
n=
£®
ÊýÁÐ{x
n}Âú×ãx
1=c
2-c
1=
-=
£®
µ±n¡Ý2ʱ£¬x
n=
=
-=c
n+1-c
n=
-=
£®
µ±n=1ʱҲ³ÉÁ¢£®
µ±n¡Ü3ʱ£¬ÊýÁÐ{x
n}µ¥µ÷µÝ¼õ£»µ±n¡Ý4ʱ£¬ÊýÁÐ{x
n}µ¥µ÷µÝÔö£¬µ«ÊÇx
n£¼0£®
¡àÊýÁÐ{x
n}µÄ×î´óÖµÊÇ
x1=£®
µãÆÀ£º±¾Ì⿼²éÁ˵ÝÍÆÊ½µÄÒâÒå¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¡¢¡°ÁÑÏîÇóºÍ¡±¡¢ÊýÁеĵ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮