精英家教网 > 高中数学 > 题目详情
20.已知抛物线C:y2=2px(p>0)的焦点为F,以抛物线C上的点M(x0,2$\sqrt{2}$)(x0>$\frac{p}{2}$)为圆心的圆与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|$\overrightarrow{MA}$|,若$\frac{|\overrightarrow{MA|}}{|\overrightarrow{AF|}}$=2,则|$\overrightarrow{AF}$|=1.

分析 由题意,|MF|=x0+$\frac{p}{2}$.利用圆M与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|$\overrightarrow{MA}$|,可得|MA|=2(x0-$\frac{p}{2}$),利用$\frac{|\overrightarrow{MA|}}{|\overrightarrow{AF|}}$=2,求出x0,p,即可求出|$\overrightarrow{AF}$|.

解答 解:由题意,|MF|=x0+$\frac{p}{2}$.
∵圆M与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|$\overrightarrow{MA}$|,
∴|MA|=2(x0-$\frac{p}{2}$),
∵$\frac{|\overrightarrow{MA|}}{|\overrightarrow{AF|}}$=2,
∴|MF|=$\frac{3}{2}$|MA|,
∴x0=p,
∴2p2=8,∴p=2,
∴|$\overrightarrow{AF}$|=1.
故答案为1.

点评 本题考查抛物线的方程与定义,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,内角A,B,C的对边分别为a,b,c,若$\frac{tanA-tanB}{tanA+tanB}$=$\frac{c-b}{c}$,则这个三角形必含有(  )
A.90°的内角B.60°的内角C.45°的内角D.30°的内角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}满足an+1=an2-an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*
(I)当0≤a1≤1时,0≤an≤1;
(II)当a1>1时,an>(a1-1)a1n-1
(III)当a1=$\frac{1}{2}$时,n-$\sqrt{2n}$<Sn<n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=lnx+$\frac{a}{x}$.
(1)求f(x)的单调区间和极值;
(2)若对任意x>0,均有x(2lna-lnx)≤a恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x)的导函数为f'(x),f(0)=0若对任意x∈R,都有f(x)>f'(x)+1,则使得f(x)+ex<1成立的x的取值范围为(  )
A.(0,+∞)B.(-∞,0)C.(-1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f′(x)是定义(0,2π)在上的函数f(x)的导函数,f(x)=f(2π-x),当0<x<π时,若f(x)sinx-f′(x)cosx<0,a=$\frac{1}{2}$f($\frac{π}{3}$),b=0,c=-$\frac{{\sqrt{3}}}{2}$f($\frac{7π}{6}$),则(  )
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=|{2x-1}|+x+\frac{1}{2}$的最小值为m.
(1)求m的值;
(2)若a,b,c是正实数,且a+b+c=m,求证:2(a3+b3+c3)≥ab+bc+ca-3abc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={-2,-1,0,1,2},B={x|-2<x≤2},则A∩B=(  )
A.{-1,0,1,2}B.{-1,0,1}C.{-2,-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.从{2,3,4,5,6}中随机选取一个数为a,从{1,2,3,5}中随机选取一个数为b,则b>a的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案