精英家教网 > 高中数学 > 题目详情
11.设数列{an}满足an+1=an2-an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*
(I)当0≤a1≤1时,0≤an≤1;
(II)当a1>1时,an>(a1-1)a1n-1
(III)当a1=$\frac{1}{2}$时,n-$\sqrt{2n}$<Sn<n.

分析 (Ⅰ)用数学归纳法能证明当0≤a1≤1时,0≤an≤1.
(Ⅱ)由an+1-an=(${{a}_{n}}^{2}-{a}_{n}+1$)-an=(an-1)2≥0,知an+1≥an.从而$\frac{{a}_{n+1}-1}{{a}_{n}-1}$=an≥a1,由此能证明当a1>1时,an>(a1-1)a1n-1
(Ⅲ)当${a}_{1}=\frac{1}{2}$时,Sn<n,令bn=1-an(n∈N*),则bn>bn+1>0,(n∈N*),由${a}_{n+1}={{a}_{n}}^{2}-{a}_{n}+1$,得${{b}_{n}}^{2}={b}_{n}-{b}_{n+1}$.从而${b}_{n}<\frac{1}{\sqrt{2n}}$,(n∈N*),由此能证明当${a}_{1}=\frac{1}{2}$时,$n-\sqrt{2n}<{S}_{n}<n$.

解答 证明:(Ⅰ)用数学归纳法证明.
①当n=1时,0≤an≤1成立.
②假设当n=k(k∈N*)时,0≤ak≤1,
则当n=k+1时,${a}_{k+1}={{a}_{k}}^{2}-{{a}_{k}+1}^{\;}$=(${a}_{k}-\frac{1}{2}$)2+$\frac{3}{4}$∈[$\frac{3}{4},1$]?[0,1],
由①②知,$0≤{a}_{n}≤1,(n∈{N}^{*})$.
∴当0≤a1≤1时,0≤an≤1.
(Ⅱ)由an+1-an=(${{a}_{n}}^{2}-{a}_{n}+1$)-an=(an-1)2≥0,知an+1≥an
若a1>1,则an>1,(n∈N*),
从而${a}_{n-1}-1=({{a}_{n}}^{2}-{a}_{n}+1)-1$=${{a}_{n}}^{2}$-an=an(an-1),
即$\frac{{a}_{n+1}-1}{{a}_{n}-1}$=an≥a1
∴${a}_{n}-1≥({a}_{1}-1){{a}_{1}}^{n-1}$,
∴当a1>1时,an>(a1-1)a1n-1
(Ⅲ)当${a}_{1}=\frac{1}{2}$时,由(Ⅰ),0<an<1(n∈N*),故Sn<n,
令bn=1-an(n∈N*),由(Ⅰ)(Ⅱ),bn>bn+1>0,(n∈N*),
由${a}_{n+1}={{a}_{n}}^{2}-{a}_{n}+1$,得${{b}_{n}}^{2}={b}_{n}-{b}_{n+1}$.
∴${{b}_{1}}^{2}+{{b}_{2}}^{2}+…+{{b}_{n}}^{2}$=(b1-b2)+(b2-b3)+…+(bn-bn+1)=b1-bn+1<b1=$\frac{1}{2}$,
∵${{b}_{1}}^{2}+{{b}_{2}}^{2}+…+{{b}_{n}}^{2}$≥$n{{b}_{n}}^{2}$,
∴nbn2$<\frac{1}{2}$,即${b}_{n}<\frac{1}{\sqrt{2n}}$,(n∈N*),
∵${b}_{n}<\frac{1}{\sqrt{2n}}$=$\frac{\sqrt{2}}{\sqrt{2}n}<\frac{\sqrt{2}}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{2}(\sqrt{n}-\sqrt{n-1})$,
∴b1+b2+…+bn$<\sqrt{2}$[($\sqrt{1}-\sqrt{0}$)+($\sqrt{2}-\sqrt{1}$)+…+($\sqrt{n}-\sqrt{n-1}$)]=$\sqrt{2n}$,
即n-Sn$<\sqrt{2n}$,亦即${S}_{n}>n-\sqrt{2n}$,
∴当${a}_{1}=\frac{1}{2}$时,$n-\sqrt{2n}<{S}_{n}<n$.

点评 本题考查数列不等式的证明,是中档题,解题时要认真审题,注意数学归纳法、数列性质、放缩法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=|log2(x-1)|-($\frac{1}{3}$)x有两个零点x1,x2,且x1<x2,则(  )
A.x1,x2∈(0,2)B.x1,x2∈(1,2)C.x1,x2∈(2,+∞)D.x1∈(1,2),x2∈(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)在[a,b]上连续,在(a,b)内可导,且f′(x)≠0.试证存在ξ,η∈(a,b),使得$\frac{f′(ξ)}{f′(η)}=\frac{{e}^{b}-{e}^{a}}{b-a}•{e}^{-η}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,Sn为其前n项和,a2+a6=6,S3=5.
(I)求数列{an}的通项公式;
(II)令${b_n}=\frac{1}{{{a_{n-1}}{a_n}}}({n≥2}),{b_1}=3,{T_n}={b_1}+{b_2}+…+{b_n}$,若Tn<m对一切n∈N*都成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知三棱柱ABC-A1B1C1的侧棱与底面ABC垂直,且AA1=4,AC=BC=2,∠ACB=90°.
(1)证明:AC⊥平面BCC1B1
(2)求直线BB1与平面AB1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),A($\frac{1}{3}$,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,则f(x)的单调递增区间是(  )
A.(2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈ZB.(2kπ-$\frac{2}{3}$π,2kπ+$\frac{4}{3}$π),k∈Z
C.(4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈ZD.(4kπ-$\frac{2}{3}$π,4kπ+$\frac{4}{3}$π),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,抛物线C:y2=8ax的焦点为F,若在E的渐近线上存在点P使得PA⊥FP,则E的离心率的取值范围是(  )
A.(1,2)B.(1,$\frac{3\sqrt{2}}{4}$]C.(2,+∞)D.[$\frac{3\sqrt{2}}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线C:y2=2px(p>0)的焦点为F,以抛物线C上的点M(x0,2$\sqrt{2}$)(x0>$\frac{p}{2}$)为圆心的圆与线段MF相交于点A,且被直线x=$\frac{p}{2}$截得的弦长为$\sqrt{3}$|$\overrightarrow{MA}$|,若$\frac{|\overrightarrow{MA|}}{|\overrightarrow{AF|}}$=2,则|$\overrightarrow{AF}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图1,在边长为$2\sqrt{3}$的正方形ABCD中,E、O分别为 AD、BC的中点,沿 EO将矩形ABOE折起使得∠BOC=120°,如图2所示,点G 在BC上,BG=2GC,M、N分别为AB、EG中点.
(Ⅰ)求证:MN∥平面OBC;
(Ⅱ)求二面角 G-ME-B的余弦值.

查看答案和解析>>

同步练习册答案