精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2$\sqrt{3}$sinxcosx-2cos2x+1.
(1)求函数f(x)的最小正周期;
(2)在△ABC中,若f($\frac{A}{2}$)=2,边AC=1,AB=2,求边BC的长及sinB的值.

分析 (1)利用倍角公式降幂,再由两角差的正弦化积,最后由周期公式求得周期;
(2)由f($\frac{A}{2}$)=2求得角A,再由已知结合余弦定理求得BC,最后由正弦定理求得sinB的值.

解答 解:(1)f(x)=2$\sqrt{3}$sinxcosx-2cos2x+1
=$\sqrt{3}sin2x-cos2x=2sin(2x-\frac{π}{6})$,
∴$T=\frac{2π}{2}=π$,即函数f(x)的最小正周期为π;
(2)∵$f(\frac{A}{2})=2sin(A-\frac{π}{6})=2$,A∈(0,π),
∴$A-\frac{π}{6}=\frac{π}{2}$,则$A=\frac{2π}{3}$.
在△ABC中,由余弦定理得,$cosA=\frac{{A{C^2}+A{B^2}-B{C^2}}}{2AC•AB}$,
即$-\frac{1}{2}=\frac{{4+1-B{C^2}}}{2×2×1}$,∴$BC=\sqrt{7}$.
由正弦定理$\frac{BC}{sinA}=\frac{AC}{sinB}$,可得$sinB=\frac{AC}{BC}sinA=\frac{1}{\sqrt{7}}×sin\frac{2π}{3}=\frac{\sqrt{7}}{7}×\frac{\sqrt{3}}{2}=\frac{\sqrt{21}}{14}$.

点评 本题考查三角函数中的恒等变换应用,考查了正弦定理和余弦定理在解三角形中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若实数x,y满足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y-3≤0}\\{0≤y≤1}{\;}\end{array}\right.$,则z=2x+y的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=$\frac{1}{2}$ax2-(1+a)x+lnx(a≥0).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当a=0时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x>-1}\\{y≤1}\\{x-y+1≤0}\end{array}}\right.$,则(x-2)2+y2的最小值为(  )
A.5B.$\sqrt{5}$C.$\frac{9}{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设正项数列{an}是等比数列,前n项和为Sn,若S3=7a3,则公比q为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+x+a,x<0\\ lnx,x>0\end{array}$,若函数f(x)的图象在A、B两点处的切线重合,则实数a的取值范围是(  )
A.(-2,-1)B.(1,2)C.(-1,+∞)D.(-ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某程序框图如图所示,若输出的S=120,则判断框内应填入(  )
A.k>4?B.k>5?C.k>6?D.k>7?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的余弦值是$\frac{3}{5}$,且满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{{4\sqrt{5}}}{5}$C.$\frac{16}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,已知点A(-t,0)(t>0),B(t,0),点C满足$\overrightarrow{AC}$•$\overrightarrow{BC}$=8,且点C到直线l:3x-4y+24=0的最小距离为$\frac{9}{5}$,则实数t的值是1.

查看答案和解析>>

同步练习册答案