精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+x+a,x<0\\ lnx,x>0\end{array}$,若函数f(x)的图象在A、B两点处的切线重合,则实数a的取值范围是(  )
A.(-2,-1)B.(1,2)C.(-1,+∞)D.(-ln2,+∞)

分析 先根据导数的几何意义写出函数f(x)在点A、B处的切线方程,再利用两直线重合的充要条件:斜率相等且纵截距相等,列出关系式,从而得出a=lnx2-$\frac{1}{4}$($\frac{1}{{x}_{2}}$-1)2-1,构造h(t)=-lnt+$\frac{1}{4}$t2-$\frac{1}{2}$t-$\frac{3}{4}$,(0<t<1),最后利用导数研究它的单调性和最值,即可得出a的取值范围.

解答 解:当x<0时,f(x)=x2+x+a的导数为f′(x)=2x+1;
当x>0时,f(x)=lnx的导数为f′(x)=$\frac{1}{x}$,
设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2
当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2
当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为
y-(x12+x1+a)=(2x1+1)(x-x1);
当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为
y-lnx2=$\frac{1}{{x}_{2}}$(x-x2).
两直线重合的充要条件是$\frac{1}{{x}_{2}}$=2x1+1①,lnx2-1=-x12+a②,
由①及x1<0<x2得0<$\frac{1}{{x}_{2}}$<1,由①②得a=lnx2-$\frac{1}{4}$($\frac{1}{{x}_{2}}$-1)2-1,
令t=$\frac{1}{{x}_{2}}$,则0<t<1,且a=-lnt+$\frac{1}{4}$t2-$\frac{1}{2}$t-$\frac{3}{4}$,
设h(t)=-lnt+$\frac{1}{4}$t2-$\frac{1}{2}$t-$\frac{3}{4}$,(0<t<1)
则h′(t)=-$\frac{1}{t}$+$\frac{1}{2}$t-$\frac{1}{2}$<0,即h(t)在(0,1)为减函数,
则h(t)>h(1)=-ln1-1=-1,
则a>-1,
可得函数f(x)的图象在点A,B处的切线重合,
a的取值范围是(-1,+∞).
故选:C.

点评 本题主要考查了导数的几何意义等基础知识,考查了推理论证能力、运算能力、创新意识,考查了函数与方程、分类与整合、转化与化归等思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数y=$\sqrt{4-|x-3|}$的定义域是[-1,7].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中 $\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AE}$,下列判断正确的是(  )
A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个
C.满足λ+μ=a(a>0)的点P最多有3个D.λ+μ的最大值为3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是一个算法的程序框图,当输入的x的值为7时,输出的y值恰好是-1,则“?”处应填的关系式可能是(  )
A.y=2x+1B.y=3-xC.y=|x|D.y=${log_{\frac{1}{3}}}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2$\sqrt{3}$sinxcosx-2cos2x+1.
(1)求函数f(x)的最小正周期;
(2)在△ABC中,若f($\frac{A}{2}$)=2,边AC=1,AB=2,求边BC的长及sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线x2=4y在点P(m,n)处的切线与直线2x+y-1=0垂直,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,已知Sn=$\frac{3}{2}$(an-1).
(1)求a1的值,并求数列{an}的通项公式;
(2)若数列{bn}为等差数列,且b3+b5=-8,2b1+b4=0,设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a>$\frac{1}{2}$,函数f(x)=$\frac{1}{6}$x3+$\frac{1}{2}$(a-2)x2+b,g(x)=2alnx,且曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处的切线互相垂直.
(Ⅰ)求a,b,c的值;
(Ⅱ)设F(x)=f′(x)-g(x),若对任意的x1,x2∈(0,4),且x1≠x2,都有F(x1)=F(x2),求证:x1+x2>4.(参考公式:(ln(a-x))′=$\frac{1}{x-a}$,a为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆柱的底面半径为r,高为h,体积为2,表面积为12,则$\frac{1}{r}$+$\frac{1}{h}$=3.

查看答案和解析>>

同步练习册答案