精英家教网 > 高中数学 > 题目详情
关于平面向量
a
b
c
,有下列三个命题:
①若
a
b
=
a
c
,则
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,则k=-3.
③非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|,则
a
a
+
b
的夹角为60°.
其中真命题的序号为
 
.(写出所有真命题的序号)
分析:①向量不满足约分运算,但满足分配律,由此我们利用向量的运算性质,可判断平面向量
a
b
c
的关系;
②中,由
a
b
,我们根据两个向量平行,坐标交叉相乘差为0的原则,可以构造一个关于k的方程,解方程即可求出k值;
③中,若|
a
|=|
b
|=|
a
-
b
|,我们利用向量加减法的平行四边形法则,可以画出满足条件图象,利用图象易得到两个向量的夹角;
解答:精英家教网解:①若
a
b
=
a
c
,则
a
•(
b
-
c
)=0,此时
a
⊥(
b
-
c
),而不一定
b
=
c
,①为假.
②由两向量
a
b
的充要条件,知1×6-k•(-2)=0,解得k=-3,②为真.
③如图,在△ABC中,设
AB
=a
AC
=b
CB
=a-b

由|
a
|=|
b
|=|
a
-
b
|,可知△ABC为等边三角形.
由平行四边形法则作出向量
a
+
b
=
AD

此时
a
a
+
b
成的角为30°.③为假.
综上,只有②是真命题.
答案:②
点评:本题考查的知识点是向量的运算性质及命题的真假判断与应用,处理的关键是熟练掌握向量的运算性质,如两个向量垂直,则数量积为0,两个向量平等,坐标交叉相乘差为0等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于平面向量
a
b
c
,有下列命题:
①(
a
b
c
-(
c
a
b
=0
②|
a
|-|
b
|<|
a
-
b
|;
③(
b
c
a
-(
c
a
b
不与
c
垂直;
④非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|,则
a
a
-
b
的夹角为60°.
其中真命题的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

关于平面向量
a
b
c
,有下列四个命题(  )
①若
a
b
.
a
0
则?λ∈R,使得
b
a

.
a
.
b
=0,则
a
=
o
b
=
0

③若
.
a
=(1,k),
b
=(-2,6),
.
a
b
则,k=-3
④若
a
b
=
a
c
 则
a
⊥(
b
-
c
)
,其中正确命题序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于平面向量
a
b
c
.有下列三个命题:
①若
a
b
=
a
c
,则
b
=
c

②若
a
=(1,k),
b
=(-2,6)
a
b
,则k=-3;
③非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|,则
a
a
+
b
的夹角为30°.
其中真命题的序号为
②③
②③
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于平面向量
a
b
c
.有下列三个命题:
①若
a
b
=
a
c
,则
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,则k=-3.
③非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|,则
a
a
+
b
的夹角为60°.
其中真命题的个数有(  )

查看答案和解析>>

同步练习册答案