精英家教网 > 高中数学 > 题目详情
20.已知x1,x2是函数f(x)=e-x-|lnx|的两个零点,则x1x2的取值范围是$\frac{1}{e}$<x1x2<1.

分析 不妨设0<x1<1<x2,从而可得${e}^{-{x}_{1}}$+lnx1=0,${e}^{-{x}_{2}}$-lnx2=0;化简可得ln(x1x2)=ln(x1)+ln(x2)=${e}^{-{x}_{2}}$-${e}^{-{x}_{1}}$;从而解得.

解答 解:作函数y=e-x与y=|lnx|的图象如图,
不妨设0<x1<1<x2
则${e}^{-{x}_{1}}$+lnx1=0,
${e}^{-{x}_{2}}$-lnx2=0;
故ln(x1x2)=ln(x1)+ln(x2
=${e}^{-{x}_{2}}$-${e}^{-{x}_{1}}$;
∵0<x1<1<x2
∴-1<${e}^{-{x}_{2}}$-${e}^{-{x}_{1}}$<0;
故-1<ln(x1x2)<0;
故$\frac{1}{e}$<x1x2<1;
故答案为:$\frac{1}{e}$<x1x2<1.

点评 本题考查了函数的零点与方程的根的关系应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.若A={x|x2-3x+a=0},B={1,2},且A∪B=B,求实数a构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,要使输出的S值小于1,则输入的t值不能是下面的(  )
A.2012B.2016C.2014D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足:a1=$\frac{1}{2}$,an+1-an=2(an+1-1)(an-1)
(Ⅰ)证明数列{$\frac{1}{{a}_{n}-1}$}是等差数列并求数列{an}的通项公式an
(Ⅱ)证明:a1•a2•a3…an$<\frac{1}{\sqrt{2n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若正项数列{an}满足lgan+1-lgan=1,且a2001+a2002+a2003+…+a2010=2015,则a2011+a2012+a2013+…+a2020的值为(  )
A.2015×1010B.2015×1011C.2016×1010D.2016×1011

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{1}{2}$x3+sinx+2x的定义域为R,数列{an}是公差为d的等差数列,且a1+a2+a3+a4+…a2015<0,记m=f(a1)+f(a2)+f(a3)+…f(a2015),关于实数m,下列说法正确的是(  )
A.m恒为负数
B.m恒为正数
C.当d>0时,m恒为正数;当d<0时,m恒为负数
D.当d>0时,m恒为负数;当d<0时,m恒为正数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.由曲线xy=1,直线y=x,x=3所围成封闭的平面图形的面积是(  )
A.$\frac{32}{9}$B.4-ln3C.4+ln3D.2-ln3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的各项均为正数a1=1,前n项和为Sn,{bn}为等比数列,b1=1,前n项和为Tn,且b2S2=12,b3S3=81,设cn=anbn,{cn}的前n项和为Mn,求Mn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正方体ABCD-A1B1C1D1的棱长为2a,E为CC1的中点
(Ⅰ)求证:平面A1BD⊥平面EBD;
(Ⅱ)求三棱锥B-A1DE的体积.

查看答案和解析>>

同步练习册答案