精英家教网 > 高中数学 > 题目详情
10.若A={x|x2-3x+a=0},B={1,2},且A∪B=B,求实数a构成的集合.

分析 根据A∪B=B,得到A⊆B,然后分A为空集和不是空集讨论,A为空集时,只要二次方程的判别式小于0即可,不是空集时,分别把1和2代入二次方程,结合判别式求解a的范围,注意求出a后需要验证.

解答 解:由A∪B=B,得A⊆B.
①若A=∅,则△=9-4a<0,解得:a>$\frac{9}{4}$;
②若△=0,则a=$\frac{9}{4}$,此时A={$\frac{3}{2}$},符合题意;
③若{1,2}∈A,则a=2,此时A={1,2},符合题意.
综上所述,实数a的取值集合是{2}$∪(\frac{9}{4},+∞)$.

点评 本题考查了并集及其运算,考查了分类讨论的数学思想,求出a值后的验证是解答此题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知双曲线:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1,则它的焦距为10;渐近线方程为y=$±\frac{4}{3}$x;焦点到渐近线的距离为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线f(x)=a(x-1)2+blnx(a,b∈R)在点(1,f(1))处的切线的斜率为1.
(Ⅰ)若函数f(x)在[2,+∞)上为减函数,求a的取值范围;
(Ⅱ)当x∈[1,+∞)时,不等式f(x)≤x-1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和Sn,且Sn+1=4an+2(n∈N*),a1=1,数列{bn}满足:bn=an+1-2an
(1)求证:数列{bn}是等比数列;
(2)求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于C点,对称轴与抛物线相较于点M,与x轴相交于点N,点P是线段MN上的一动点,过点P作PE⊥CP交x轴于点E.
(1)直接写出抛物线的顶点M的坐标是(1,4);
(2)当点E与点O(原点)重合时,求点P的坐标;
(2)点P从M运动到N的过程中,求动点E的运动的路径长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z1=a+2i,z2=1-2i,若$\frac{z_1}{z_2}$是纯虚数,则实数a的值为(  )
A.-2B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆W:$\frac{x^2}{2m+10}+\frac{y^2}{{{m^2}-2}}$=1的左焦点为F(m,0),过点M(-3,0)作一条斜率大于0的直线l与W交于不同的两点A、B,延长BF交W于点C.
(Ⅰ)求椭圆W的离心率;
(Ⅱ)求证:点A与点C关于x轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.把复数z的共轭复数记作$\overline{z}$,复数z=3-4i(i为虚数单位),则复数$\frac{6-2i}{|z|-\overline{z}}$在复平面内所对应的点在第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x1,x2是函数f(x)=e-x-|lnx|的两个零点,则x1x2的取值范围是$\frac{1}{e}$<x1x2<1.

查看答案和解析>>

同步练习册答案