精英家教网 > 高中数学 > 题目详情
15.已知复数z1=a+2i,z2=1-2i,若$\frac{z_1}{z_2}$是纯虚数,则实数a的值为(  )
A.-2B.1C.2D.4

分析 利用复数的运算法则、纯虚数的定义即可得出.

解答 解:∵$\frac{z_1}{z_2}$=$\frac{a+2i}{1-2i}$=$\frac{(a+2i)(1+2i)}{(1-2i)(1+2i)}$=$\frac{a-4+(2+2a)i}{5}$是纯虚数,
则$\left\{\begin{array}{l}{\frac{a-4}{5}=0}\\{\frac{2+2a}{5}≠0}\end{array}\right.$,解得a=4.
故选:D.

点评 本题考查了复数的运算法则、纯虚数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.数列{an}的首项为1,数列{bn}为等比数列且bn=$\frac{{a}_{n+1}}{{a}_{n}}$,若b2=2,则a4=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线y=kx与函数f(x)=$\left\{\begin{array}{l}{2-(\frac{1}{2})^{x},x≤0}\\{\frac{1}{2}{x}^{2}-x+1,x>0}\end{array}\right.$的图象恰好有3个不同的公共点,则实数k的取值范围是(  )
A.($\sqrt{2}$-1,+∞)B.(0,$\sqrt{2}$-1)C.(-$\sqrt{2}$-1,$\sqrt{2}$-1)D.(-∞,-$\sqrt{2}$-1)∪($\sqrt{2}$-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A,B,C,P在同一平面内,且$\overrightarrow{PQ}$=$\frac{1}{3}$$\overrightarrow{PA}$,$\overrightarrow{QR}$=$\frac{1}{3}$$\overrightarrow{QB}$,$\overrightarrow{RP}$=$\frac{1}{3}$$\overrightarrow{RC}$,则△ABC与△PBC的面积之比是(  )
A.14:3B.19:4C.24:5D.29:6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若A={x|x2-3x+a=0},B={1,2},且A∪B=B,求实数a构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,将矩形ABCD沿对角线BD把△ABD折起,使A点移到A1点,且A1在平面BCD上的射影O恰好在CD上.
(Ⅰ)求证:BC⊥A1D;
(Ⅱ)求证:平面A1CD⊥平面A1BC;
(Ⅲ)若AB=10,BC=6,求三棱锥A1-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.化简:$\frac{1-co{s}^{4}α-si{n}^{4}α}{1-co{s}^{6}α-si{n}^{6}α}$的值为(  )
A.$\frac{2}{3}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx-$\frac{a}{2}{x^2}$,a≠0.
(Ⅰ)当a≥1时,判断函数f(x)的单调性;
(Ⅱ)若函数f(x)在$x∈(0,\frac{2}{a^2})$有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{1}{2}$x3+sinx+2x的定义域为R,数列{an}是公差为d的等差数列,且a1+a2+a3+a4+…a2015<0,记m=f(a1)+f(a2)+f(a3)+…f(a2015),关于实数m,下列说法正确的是(  )
A.m恒为负数
B.m恒为正数
C.当d>0时,m恒为正数;当d<0时,m恒为负数
D.当d>0时,m恒为负数;当d<0时,m恒为正数

查看答案和解析>>

同步练习册答案