精英家教网 > 高中数学 > 题目详情
20.如图,将矩形ABCD沿对角线BD把△ABD折起,使A点移到A1点,且A1在平面BCD上的射影O恰好在CD上.
(Ⅰ)求证:BC⊥A1D;
(Ⅱ)求证:平面A1CD⊥平面A1BC;
(Ⅲ)若AB=10,BC=6,求三棱锥A1-BCD的体积.

分析 ((I)证明BC⊥A1O.推出BC⊥平面A1CD.通过直线与平面垂直的性质定理证明BC⊥A1D.
(II)证明A1D⊥A1B.推出A1D⊥平面A1BC.然后证明平面A1BC⊥平面A1CD.
(III)利用${V}_{{A}_{1}-BCD}={V}_{D-{A}_{1}BC}$,求出底面面积与高,即可求出几何体的体积.

解答 (共14分)
解:(I)因为A1在平面BCD上的射影O在CD上,
所以A1O⊥平面BCD.
又BC?平面BCD,
所以BC⊥A1O.
又BC⊥CO,CO∩A1O=O,CO?平面A1CD,A1O?平面A1CD,
所以BC⊥平面A1CD.
又A1D?平面A1CD,
所以BC⊥A1D.(5分)
(II)因为矩形ABCD,
所以A1D⊥A1B.
由(I)知BC⊥A1D.
又BC∩A1B=B,BC?平面A1BC,A1B?平面A1BC,
所以A1D⊥平面A1BC.
又A1D?平面A1CD,
所以平面A1BC⊥平面A1CD.(10分)
(III)因为A1D⊥平面A1BC,
所以A1D⊥A1C.
因为CD=10,A1D=6,所以A1C=8.
所以${V_{{A_1}-BCD}}={V_{D-{A_1}BC}}=\frac{1}{3}×\frac{1}{2}×6×8×6=48$.(14分)

点评 本题考查直线与平面垂直的判定与性质吗,平面与平面垂直的判定定理的应用,几何体的体积的求法,考查逻辑推理以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设函数$f(x)=2cos(\frac{1}{2}x+\frac{π}{6})$,则该函数的最小正周期为4π,值域为[-2,2],单调递增区间为[4kπ-$\frac{7π}{3}$,4kπ-$\frac{π}{3}$],k∈z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.根据数列的前几项,写出一个通项公式:
(1)-1,7,-13,19,…;
(2)0.8,0.88,0.888,…;
(3)-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{5}{8}$,$\frac{13}{16}$,-$\frac{29}{32}$,$\frac{61}{64}$…;
(4)$\frac{3}{2}$,1,$\frac{7}{10}$,$\frac{9}{17}$,…;
(5)0,1,0,1,….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设an是满足下述条件的自然数的个数,各数位上的数字之和为n(n∈N*),且每个数位上的数字只能是1或2.
(1)求a1,a2,a3,a4的值;
(2)求证:a5n-1(n∈N*)是5的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z1=a+2i,z2=1-2i,若$\frac{z_1}{z_2}$是纯虚数,则实数a的值为(  )
A.-2B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=2x2+5的图象上一点(1,7)及其邻近一点(1+△x,7+△y),则$\frac{△y}{△x}$=4+2△x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等比数列{an}的前n项和为Sn,若S3=3a1,且a4=8,则S10=341或80.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(ωx+$\frac{π}{2}$)(ω>0),f($\frac{π}{6}$)=f($\frac{π}{3}$),且f(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上有最小值,无最大值,则ω的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-2y+4{{≥}_{\;}}0}\\{3x-y-3{{≤}_{\;}}0}\\{2x+y-2{{≥}_{\;}}0}\end{array}}\right.$,则z=3x+2y的最小值为(  )
A.12B.4C.3D.1

查看答案和解析>>

同步练习册答案