| A. | 12 | B. | 4 | C. | 3 | D. | 1 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答 解:由z=3x+2y得$y=-\frac{3}{2}x+\frac{z}{2}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线$y=-\frac{3}{2}x+\frac{z}{2}$由图象可知当直线$y=-\frac{3}{2}x+\frac{z}{2}$经过点A时,直线$y=-\frac{3}{2}x+\frac{z}{2}$的截距最小,![]()
此时z也最小,
由$\left\{\begin{array}{l}{3x-y-3=0}\\{2x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即A(1,0)
将A(1,0)代入目标函数z=3x+2y,
得z=3.
故选:C
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m恒为负数 | |
| B. | m恒为正数 | |
| C. | 当d>0时,m恒为正数;当d<0时,m恒为负数 | |
| D. | 当d>0时,m恒为负数;当d<0时,m恒为正数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | (300,+∞) |
| 天数 | 3 | 5 | 8 | 10 | 8 | 4 | 2 |
| 非重度污染 | 重度污染 | 合计 | |
| 供暖季 | |||
| 非供暖季 | |||
| 合计 | 40 |
| P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k | 1.323 | 2.072 | 2.706 | 3.841 | 5.025 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com