18£®ÒÑÖªÅ×ÎïÏߵĶ¥µãÊÇ×ø±êÔ­µãO£¬½¹µãFÔÚxÖáÕý°ëÖáÉÏ£¬Å×ÎïÏßÉÏÒ»µã£¨3£¬m£©µ½½¹µã¾àÀëΪ4£¬¹ýµãFµÄÖ±ÏßlÓëÅ×ÎïÏß½»ÓÚA¡¢BÁ½µã£®
£¨¢ñ£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨¢ò£©ÈôµãPÔÚÅ×ÎïÏß×¼ÏßÉÏÔ˶¯£¬Æä×Ý×ø±êµÄȡֵ·¶Î§ÊÇ[-2£¬2]£¬ÇÒ$\overrightarrow{PA}•\overrightarrow{PB}=16$£¬µãQÊÇÒÔABΪֱ¾¶µÄÔ²Óë×¼ÏßµÄÒ»¸ö¹«¹²µã£¬ÇóµãQµÄ×Ý×ø±êµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©Éè³öÅ×ÎïÏß·½³Ì£¬ÀûÓÃÅ×ÎïÏßÉÏÒ»µã£¨3£¬m£©µ½½¹µã¾àÀëΪ4£¬Çó³öp£¬¼´¿ÉÇóÅ×ÎïÏߵķ½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪx=ty+1£¬ÁªÁ¢Å×ÎïÏßÏûÈ¥x£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏ$\overrightarrow{PA}•\overrightarrow{PB}=16$£¬È·¶¨2tµÄ·¶Î§£¬¸ù¾ÝÅ×ÎïÏߵ͍Òå¿ÉÖª£¬ÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßµÄ×¼ÏßÏàÇУ¬¿ÉµÃµãQµÄ×Ý×ø±êΪ$\frac{{{y_1}+{y_2}}}{2}=2t$£¬¼´¿ÉÇó³öµãQµÄ×Ý×ø±êµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÉèÅ×ÎïÏß·½³ÌΪy2=2px£¨p£¾0£©¡­£¨1·Ö£©
ÓÉÌâÒâ¿ÉµÃ£º$3+\frac{p}{2}=4$£¬¡àp=2¡­£¨3·Ö£©
ËùÇóÅ×ÎïÏß·½³ÌΪy2=4x¡­£¨4·Ö£©
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪx=ty+1£¬
ÁªÁ¢Å×ÎïÏßÏûÈ¥x£¬µÃy2=4£¨ty+1£©£¬¼´y2-4ty-4=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòy1+y2=4t£¬y1y2=-4£¬
ËùÒÔ${x_1}{x_2}=£¨t{y_1}+1£©£¨t{y_2}+1£©={t^2}{y_1}{y_2}+t£¨{y_1}+{y_2}£©+1=1$£¬${x_1}+{x_2}=4{t^2}+2$¡­£¨7·Ö£©
ÓÉÌõ¼þ¿ÉÉèPµÄ×ø±êΪ£¨-1£¬a£©£¨-2¡Üa¡Ü2£©£¬
Ôò$\overrightarrow{PA}•\overrightarrow{PB}$=${x_1}{x_2}+£¨{x_1}+{x_2}£©+1+{y_1}{y_2}-a£¨{y_1}+{y_2}£©+{a^2}$=1+4t2+2+1-4-4at+a2=4t2-4at+a2=£¨2t-a£©2=16£®
ËùÒÔ2t-4=a»ò2t+4=a£¬¶ø-2¡Üa¡Ü2£¬
ËùÒÔ2¡Ü2t¡Ü6»ò-6¡Ü2t¡Ü-2¡­£¨10·Ö£©
¸ù¾ÝÅ×ÎïÏߵ͍Òå¿ÉÖª£¬ÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßµÄ×¼ÏßÏàÇУ¬
ËùÒÔµãQµÄ×Ý×ø±êΪ$\frac{{{y_1}+{y_2}}}{2}=2t$£¬
´Ó¶øµãQµÄ×Ý×ø±êµÄȡֵ·¶Î§ÊÇ[-6£¬-2]¡È[2£¬6]¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏß·½³Ì£¬¿¼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÉèanÊÇÂú×ãÏÂÊöÌõ¼þµÄ×ÔÈ»ÊýµÄ¸öÊý£¬¸÷ÊýλÉϵÄÊý×ÖÖ®ºÍΪn£¨n¡ÊN*£©£¬ÇÒÿ¸öÊýλÉϵÄÊý×ÖÖ»ÄÜÊÇ1»ò2£®
£¨1£©Çóa1£¬a2£¬a3£¬a4µÄÖµ£»
£¨2£©ÇóÖ¤£ºa5n-1£¨n¡ÊN*£©ÊÇ5µÄ±¶Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+$\frac{¦Ð}{2}$£©£¨¦Ø£¾0£©£¬f£¨$\frac{¦Ð}{6}$£©=f£¨$\frac{¦Ð}{3}$£©£¬ÇÒf£¨x£©ÔÚÇø¼ä[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$]ÉÏÓÐ×îСֵ£¬ÎÞ×î´óÖµ£¬Ôò¦ØµÄֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x+y-7¡Ü0}\\{x-3y+1¡Ü0}\\{3x-y-5¡Ý0}\end{array}\right.$£¬Ôòz=|x-2y|µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®10B£®5C£®3D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¶ÔÈÎÒâ·ÇÁãʵÊýa£¬b£¬¶¨Òåa¨’bµÄËã·¨Ô­ÀíÈçÓÒ²à³ÌÐò¿òͼËùʾ£®Éèa=$\frac{5}{2}$£¬b=2£¬Ôò¼ÆËã»úÖ´ÐиÃÔËËãºóÊä³öµÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®$\frac{7}{5}$B£®$\frac{7}{4}$C£®$\frac{7}{3}$D£®$\frac{7}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÉèlÊǾ­¹ýµã£¨2£¬1£©µÄÈÎÒâÒ»ÌõÖ±Ïߣ¬µ±Ô­µãOµ½lµÄ¾àÀë×î´óʱ£¬lµÄ·½³ÌÊÇ£¨¡¡¡¡£©
A£®x-2y=0B£®x+2y-4=0C£®2x+y-5=0D£®2x-y-1=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éè±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{{\begin{array}{l}{x-2y+4{{¡Ý}_{\;}}0}\\{3x-y-3{{¡Ü}_{\;}}0}\\{2x+y-2{{¡Ý}_{\;}}0}\end{array}}\right.$£¬Ôòz=3x+2yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®12B£®4C£®3D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖª¡÷ABCÖУ¬AB=BC=3£¬AC=4£¬µãOÊÇÆäÄÚÐÄ£¬Ôò$\overrightarrow{AO}$•$\overrightarrow{BC}$µÄÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÉèN+±íʾÕýÊýÊý¼¯£¬ÔÚÊýÁÐ{an}ÖУ¬?n¡ÊN+£¬an+1ÊÇan+1Óë3anµÄµÈ²îÖÐÏÈç¹ûa1=3£¬ÄÇôÊýÁÐ{an}µÄͨÏʽΪan=3n£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸