精英家教网 > 高中数学 > 题目详情
3.设l是经过点(2,1)的任意一条直线,当原点O到l的距离最大时,l的方程是(  )
A.x-2y=0B.x+2y-4=0C.2x+y-5=0D.2x-y-1=0

分析 设l是经过点P(2,1)的任意一条直线,当原点O到l的距离最大时,OP⊥l.利用相互垂直的直线斜率之间的关系、点斜式得出.

解答 解:设l是经过点P(2,1)的任意一条直线,
当原点O到l的距离最大时,OP⊥l.
∵kOP=$\frac{1}{2}$,
∴kl=-2.
∴直线l的方程为:y-1=-2(x-2),
化为2x+y-5=0.
故选:C.

点评 本题考查了相互垂直的直线斜率之间的关系、点斜式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx.
(Ⅰ)试求曲线y=f(x)在点(e,f(e))处的切线方程;
(Ⅱ)若x>1,试判断方程f(x)=(x-1)(ax-a+1)的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=lnx+$\frac{1}{2}$x2-2x.
(Ⅰ)证明f(x)有唯一零点;
(Ⅱ)设g(x)=$\frac{1}{3}$x3-$\frac{1}{x}$-2af(x)-2x,若g(x)是增函数,求A的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x2-2x
(Ⅰ)解不等式|f(x)|+|x2+2x|≥6|x|;
(Ⅱ)若实数a满足|x-a|<1,求证:|f(x)-f(a)|<2|a|+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线的顶点是坐标原点O,焦点F在x轴正半轴上,抛物线上一点(3,m)到焦点距离为4,过点F的直线l与抛物线交于A、B两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)若点P在抛物线准线上运动,其纵坐标的取值范围是[-2,2],且$\overrightarrow{PA}•\overrightarrow{PB}=16$,点Q是以AB为直径的圆与准线的一个公共点,求点Q的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等比数列{an}的公比为正数,且a2=1,a3•a9=2a52,则a10等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线l:x-y+c=0(c∈R),⊙M:(x-2)2+(y-2)2=1,直线l把⊙M分成两段圆弧,弧长之比为λ,其中$\frac{1}{2}$<λ<1,则c={c|-$\frac{\sqrt{2}}{2}$<c<$\frac{\sqrt{2}}{2}$,且 c≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=log4(7+6x-x2)的单调递增区间是(-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.满足sin2x=$\frac{1}{2}$的x的集合是{x|x=kπ±$\frac{π}{4}$,k∈z}.

查看答案和解析>>

同步练习册答案