精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=sin(ωx+$\frac{π}{2}$)(ω>0),f($\frac{π}{6}$)=f($\frac{π}{3}$),且f(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上有最小值,无最大值,则ω的值为4.

分析 由题意可得f(x)的图象关于直线x=$\frac{π}{4}$对称,f($\frac{π}{4}$)=sin($\frac{π}{4}$ω+$\frac{π}{2}$)=-1,即即ω=8k-4;再结合$\frac{π}{3}$-$\frac{π}{4}$<$\frac{T}{2}$=$\frac{π}{ω}$,求得ω的值.

解答 解:由f($\frac{π}{6}$)=f($\frac{π}{3}$),可得f(x)的图象关于直线x=$\frac{\frac{π}{6}+\frac{π}{3}}{2}$=$\frac{π}{4}$对称.
再根据f(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上有最小值,可得f($\frac{π}{4}$)=sin($\frac{π}{4}$ω+$\frac{π}{2}$)=-1,
∴$\frac{π}{4}$ω+$\frac{π}{2}$=2kπ-$\frac{π}{2}$,k∈z,即ω=8k-4,k∈z.
再根据f(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上无最大值,$\frac{π}{3}$-$\frac{π}{4}$<$\frac{T}{2}$=$\frac{π}{ω}$,求得ω<12.
综合可得ω=4,
故答案为:4.

点评 本题主要考查正弦函数的图象特征,正弦函数的图象的对称性、定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知随机变量X服从正态分布N(2,σ2),且P(X<4)=0.7,则P(0<X<2)=0.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,将矩形ABCD沿对角线BD把△ABD折起,使A点移到A1点,且A1在平面BCD上的射影O恰好在CD上.
(Ⅰ)求证:BC⊥A1D;
(Ⅱ)求证:平面A1CD⊥平面A1BC;
(Ⅲ)若AB=10,BC=6,求三棱锥A1-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z=|$\sqrt{3}$-i|+i(i为虚数单位),则复数z的共轭复数为(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx-$\frac{a}{2}{x^2}$,a≠0.
(Ⅰ)当a≥1时,判断函数f(x)的单调性;
(Ⅱ)若函数f(x)在$x∈(0,\frac{2}{a^2})$有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=lnx+$\frac{1}{2}$x2-2x.
(Ⅰ)证明f(x)有唯一零点;
(Ⅱ)设g(x)=$\frac{1}{3}$x3-$\frac{1}{x}$-2af(x)-2x,若g(x)是增函数,求A的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-1|+|2x+a|
(1)若x=0是不等式f(x)<5的解,求实数a的取值范围
(2)若不等式f(x)<5-|x+1|的解集为空集.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线的顶点是坐标原点O,焦点F在x轴正半轴上,抛物线上一点(3,m)到焦点距离为4,过点F的直线l与抛物线交于A、B两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)若点P在抛物线准线上运动,其纵坐标的取值范围是[-2,2],且$\overrightarrow{PA}•\overrightarrow{PB}=16$,点Q是以AB为直径的圆与准线的一个公共点,求点Q的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:$\frac{sinx}{tanx-tanxsinx}$+$\frac{1+sinx}{cosx}$.

查看答案和解析>>

同步练习册答案