精英家教网 > 高中数学 > 题目详情
13.对任意非零实数a,b,定义a⊕b的算法原理如右侧程序框图所示.设a=$\frac{5}{2}$,b=2,则计算机执行该运算后输出的结果是(  )
A.$\frac{7}{5}$B.$\frac{7}{4}$C.$\frac{7}{3}$D.$\frac{7}{2}$

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数y=$\left\{\begin{array}{l}{\frac{b-1}{a}}&{a≤b}\\{\frac{a+1}{b}}&{a>b}\end{array}\right.$的函数值.

解答 解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,可知:
该程序的作用是计算并输出分段函数y=$\left\{\begin{array}{l}{\frac{b-1}{a}}&{a≤b}\\{\frac{a+1}{b}}&{a>b}\end{array}\right.$的函数值.
∵a=$\frac{5}{2}$>b=2,
∴a?b=$\frac{5}{2}$?2=$\frac{7}{4}$,
故选:B.

点评 本题主要考查了选择结构,根据流程图分析出计算的类型是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知点A,B,C,P在同一平面内,且$\overrightarrow{PQ}$=$\frac{1}{3}$$\overrightarrow{PA}$,$\overrightarrow{QR}$=$\frac{1}{3}$$\overrightarrow{QB}$,$\overrightarrow{RP}$=$\frac{1}{3}$$\overrightarrow{RC}$,则△ABC与△PBC的面积之比是(  )
A.14:3B.19:4C.24:5D.29:6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx-$\frac{a}{2}{x^2}$,a≠0.
(Ⅰ)当a≥1时,判断函数f(x)的单调性;
(Ⅱ)若函数f(x)在$x∈(0,\frac{2}{a^2})$有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-1|+|2x+a|
(1)若x=0是不等式f(x)<5的解,求实数a的取值范围
(2)若不等式f(x)<5-|x+1|的解集为空集.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足:a1=$\frac{1}{2}$,an+1-an=2(an+1-1)(an-1)
(Ⅰ)证明数列{$\frac{1}{{a}_{n}-1}$}是等差数列并求数列{an}的通项公式an
(Ⅱ)证明:a1•a2•a3…an$<\frac{1}{\sqrt{2n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线的顶点是坐标原点O,焦点F在x轴正半轴上,抛物线上一点(3,m)到焦点距离为4,过点F的直线l与抛物线交于A、B两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)若点P在抛物线准线上运动,其纵坐标的取值范围是[-2,2],且$\overrightarrow{PA}•\overrightarrow{PB}=16$,点Q是以AB为直径的圆与准线的一个公共点,求点Q的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{1}{2}$x3+sinx+2x的定义域为R,数列{an}是公差为d的等差数列,且a1+a2+a3+a4+…a2015<0,记m=f(a1)+f(a2)+f(a3)+…f(a2015),关于实数m,下列说法正确的是(  )
A.m恒为负数
B.m恒为正数
C.当d>0时,m恒为正数;当d<0时,m恒为负数
D.当d>0时,m恒为负数;当d<0时,m恒为正数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在北方某城市随机选取一年内40天的空气污染指数(API)的监测数据,统计结果如下:
 API[0,50](50,100](100,150](150,200](200,250](250,300](300,+∞)
 天数   35810842
(Ⅰ)已知污染指数API大于250为重度污染,若本次抽取样本数据有9天是在供暖季,其中有3天为重度污染,完成下面的2×2列联表,问有多大把握认为该城市空气重度污染与供暖有关?
非重度污染重度污染合计
供暖季
非供暖季
合计40
(Ⅱ)在样本中,从污染指数API大于250的6天中任取2天,求至少有1天API大于300的概率.
附注:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k)0.250.150.100.050.0250.010.0050.001
k1.3232.0722.7063.8415.0256.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设Sn是等差数列{an}的前n项和,若a1:a2=1:2,则S1:S3=(  )
A.1:3B.1:4C.1:5D.1:6

查看答案和解析>>

同步练习册答案