精英家教网 > 高中数学 > 题目详情
20.下列函数中,既是奇函数又在其定义域上是增函数的是(  )
A.y=-$\frac{2}{x}$B.y=2xC.y=log2xD.y=2x

分析 根据反比例函数单调性,奇函数的定义,一次函数的单调性,对数函数和指数函数的奇偶性即可找到正确选项.

解答 解:反比例函数y=$-\frac{2}{x}$在其定义域上没有单调性;
一次函数y=2x时奇函数,且在其定义域上为增函数,∴B正确;
根据对数函数y=log2x,和指数函数y=2x的图象知,这两函数都不是奇函数.
故选:B.

点评 考查反比例函数、一次函数的单调性,一次函数、对数函数,以及指数函数的奇偶性,知道奇函数图象的特点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-2y+4{{≥}_{\;}}0}\\{3x-y-3{{≤}_{\;}}0}\\{2x+y-2{{≥}_{\;}}0}\end{array}}\right.$,则z=3x+2y的最小值为(  )
A.12B.4C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a>b>0,则lg$\frac{a}{b}$>lg$\frac{1+a}{1+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设N+表示正数数集,在数列{an}中,?n∈N+,an+1是an+1与3an的等差中项,如果a1=3,那么数列{an}的通项公式为an=3n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在[0,2π]上,满足sinx≥$\frac{\sqrt{3}}{2}$的x的取值范围是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{5π}{3}$]C.[$\frac{π}{3}$,$\frac{2π}{3}$]D.[$\frac{5π}{6}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的各项互不相等,前两项的和为10,设向量$\overrightarrow{m}$=(a1,a3),$\overrightarrow{n}$=(a3,a7),且$\overrightarrow{m}∥\overrightarrow{n}$;
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}}{2×{4}^{n}}$,其前n项和为Tn,求证:Tn<$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC中,已知角A,B,C的对边a,b,c成等比数列,公比是q.
(1)若A,B,C成等差数列,求q的值.
(2)求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.平面上有两条相距2a的平行线,把一枚半径为r(r<a)的硬币任意掷在两线之间,则硬币不与任何一条直线相碰的概率是$\frac{a-r}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线 y2=2px(p>0)的焦点为F,准线为 l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点坐标为 (3,y0)时,△AEF为正三角形,则此时△OAB的面积为(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案