【题目】已知奇函数
(1)求b的值,并求出函数的定义域
(2)若存在区间,使得时,的取值范围为,求的取值范围
【答案】(1)
(2)
【解析】
(1)由函数为奇函数且函数在处有意义,则,即可求得,再检验即可得解,然后再求函数的定义域;
(2)分类讨论函数的单调性,再利用函数的单调性求函数的最值,再根据方程的解的个数求的取值范围即可得解.
解:(1)由函数为奇函数,显然函数在处有意义, 则,则,即,
检验当时,显然为奇函数,故;
由且,解得,故函数的定义域为;
(2)由,
①当时,函数在为减函数,
又存在区间,使得时,的取值范围为,
则,,即,,又,则,即,不合题意,
②当时,函数在为增函数,
又存在区间,使得时,的取值范围为,
则,,
即在有两个不等实数解,
即在有两个不等实数解,
设,,
则,则,解得,
又,即,
综合①②可得:的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知正实数x,y满足等式.
(Ⅰ)试将y表示为x的函数,并求出定义域和值域;
(Ⅱ)是否存在实数m,使得函数有零点?若存在,求出m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱柱中,底面边长为,侧棱长为.
(1)求证:平面平面;
(2)求直线与平面所成的角的正弦值;
(3)设为截面内-点(不包括边界),求到面,面,面的距离平方和的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角三棱柱中,、分别为、的中点,,.
(1)求证:平面;
(2)求证:平面平面;
(3)若直线和平面所成角的正弦值等于,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若函数为偶函数,求实数的值;
(2)存在实数,使得不等式成立,求实数的取值范围;
(3)若方程在上有且仅有两个不相等的实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出表中数据的散点图;
(2)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗多少吨标准煤?
(附:,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com