精英家教网 > 高中数学 > 题目详情

【题目】已知是平面上任意三点,且.的最小值是______.

【答案】

【解析】

先假定abc可形成△c/a+b +b/c,c/a+b分子与b/c分母相同,故视c为定数 c/a+b +b/c越小,应是a+b越大,b越小(a越大)

情况一:b越小时

b→0,a+b→c,c/a+b +b/c→1

情况二:a越大时

a→b+c

所以c/a+b +b/c="c/2b+c" +b/c=k(k>0)

c^2+bc+2b^2=k(c^2+2bc)

(1-k)c^2+(1-2k)c/b+2=0

因为c/b为实数,所以判别式≥0

(1-k)^2-8(1-k)≥0

4k^2+4k-7≥0

解得k≥√2-1/2 k≤-√2-1/2

k≥√2-1/2,即最小值=√2-1/2

此时c=b+c,c/b=2+2√2

a:b:c=(3+2√2):1:(2+2√2)

也就是说当A B C共线时c/a+b +b/c有最小值=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线过点

(Ⅰ)求双曲线的方程;

(Ⅱ)设直线与双曲线C交于AB两点,试问:k为何值时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.若满射,满足:对任意的则称为“和谐函数”. .设“和谐映射”为满足条件:存在正整数,使得(1)当时,若 ;(2)若,则的最大可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于曲线:上原点之外的每一点,求证存在过的直线与椭圆相交于两点,使均为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5个匣子,每个匣子有一把钥匙,并且钥匙不能通用.如果随意在每一个匣内放入一把钥匙,然后把匣子全都锁上.现在允许砸开一个匣子,使得能相继用钥匙打开其余4个匣子,那么钥匙的放法有______种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数

1)求b的值,并求出函数的定义域

2)若存在区间,使得时,的取值范围为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,其中是函数定义城内任意不相等的两个实数.

1)若,同时,求证:

2)判断是否在集合A中,并说明理由;

3)设函数的定义域为B,函数的值域为C.函数满足以下3个条件:

,②,③.试确定一个满足以上3个条件的函数要对满足的条件进行说明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数y=f(x)的单调区间;

(2)若对于x∈(0,+∞)都有成立,试求m的取值范围;

(3)记g(x)=f(x)+x﹣n﹣3.当m=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1是等边三角形,D.E分别是BC.AC上两点,且AD交于点H,链接CH.

1)当时,求的值;

2)如图2,当时,__________ __________.

查看答案和解析>>

同步练习册答案