7£®ÒÑÖªº¯Êýf£¨x£©=ax2+2bx£¬g£¨x£©=b+lnx£¨a¡Ê[-1£¬2]£¬b¡ÊR£¬b¡Ù0£©£®
£¨¢ñ£©ÇóÃüÌâA£º¡°?x¡ÊR£¬¶ÔÓÚ?m¡ÊR+£¬f£¨x£©=m¡±ÎªÕæÃüÌâµÄ¸ÅÂÊ£»
£¨¢ò£©Èôa¡ÊZ£¬b¡Ê{-2£¬-1£¬1£¬2}£¬Ð´³öËùÓеÄÊý¶Ô£¨a£¬b£©£®É躯Êý¦Õ£¨x£©=$\left\{\begin{array}{l}f£¨x£©£¬x¡Ü1\\ g£¨x£©£¬x£¾1\end{array}$¼Ç¡°?x1£¬x2¡Ê£¨-¡Þ£¬+¡Þ£©£¬x1¡Ùx2£¬$\frac{{¦Õ£¨{x_1}£©-¦Õ£¨{x_2}£©}}{{{x_1}-{x_2}}}$£¾0¡±ÎªÊ¼þB£¬ÇóʼþB·¢ÉúµÄ¸ÅÂÊP£¨B£©£®

·ÖÎö £¨¢ñ£©µ±a£¼0ʱ£¬ÃüÌâAΪ¼ÙÃüÌ⣬ÈôÃüÌâAÎªÕæÃüÌ⣬±ØÓÐa¡Ý0£¬ÀûÓü¸ºÎ¸ÅÐÍÇóµÃ¸ÅÂÊ£®
£¨¢ò£©ÏȵóöËùÓпÉÄܵÄÊý¶Ô£¬ÔÙ¸ù¾Ýº¯ÊýµÃµ¥µ÷ÐԵõ½ËùÒÔҪʹʼþB·¢Éú£¬Ö»Ðèf£¨1£©¡Üg£¨1£©¼Ì¶øµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨¢ñ£©µ±a£¼0ʱ£¬ÃüÌâAΪ¼ÙÃüÌ⣬ÈôÃüÌâAÎªÕæÃüÌ⣬±ØÓÐa¡Ý0£¬
¡ß-1£¼a£¼3£¬Óɼ¸ºÎ¸ÅÐÍ֪ʶ¿ÉµÃÃüÌâAÎªÕæÃüÌâµÄ¸ÅÂÊΪP£¨A£©=$\frac{2}{3}$
£¨¢ò£©ËùÓпÉÄܵÄÊý¶Ô£¨a£¬b£©Îª£¨-1£¬-2£©£¨-1£¬-1£©£¬£¨-1£¬1£©£¬£¨-1£¬2£©£¬£¨0£¬-2£©£¨0£¬-1£©£¬
£¨0£¬1£©£¬£¨0£¬2£©£¬£¨1£¬-2£©£¬£¨1£¬-1£©£¬£¨1£¬1£©£¬£¨1£¬2£©£¬£¨2£¬-2£©£¬£¨2£¬-1£©£¬£¨2£¬1£©£¬£¨2£¬2£©£¬¹²ÓÐ16¸ö£®
ÒòΪx£¾1ʱ£¬¦Õ£¨x£©=g£¨x£©=b+lnxÔÚÇø¼ä£¨1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
ËùÒÔ?x1£¬x2¡Ê[1£¬+¡Þ£©£¬x1¡Ùx2£¬$\frac{¦Õ£¨{x}_{1}£©-¦Õ£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}£¾0$³ÉÁ¢£¬ËùÒÔҪʹʼþB·¢Éú£¬Ö»Ðèf£¨1£©¡Üg£¨1£©
¼´a+b¡Ü0£¬Âú×ãÌõ¼þµÄÊý¶Ô£¨a£¬b£©Îª£¨-1£¬-2£©£¨-1£¬-1£©£¬£¨-1£¬1£©£¬£©£¬£¨0£¬-2£©£¨0£¬-1£©£¬£¨1£¬-2£©£¬£¨1£¬-1£©£¬£¨2£¬-2£©£¬¹²8¸ö£®
ËùÒÔÓɹŵä¸ÅÐÍ֪ʶ¿ÉµÃP£¨B£©=$\frac{8}{16}=\frac{1}{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¹Åµä¸ÅÐͺͼ¸ºÎ¸ÅÐÍ£¬Êô¼òµ¥ÌâÐÍ£¬¸ß¿¼Ê±Óп¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÇÒ$\frac{cosC}{cosB}$=$\frac{3a-c}{b}$£®
£¨¢ñ£©ÇócosBµÄÖµ£»
£¨¢ò£©Èôb=4$\sqrt{2}$£¬a=c£¬Çósin£¨A+$\frac{¦Ð}{6}$£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Éèn¡ÊN*£¬£¨x+3£©nÕ¹¿ªÊ½µÄËùÓÐÏîϵÊýºÍΪ256£¬ÔòÆä¶þÏîʽϵÊýµÄ×î´óֵΪ6£®£¨ÓÃÊý×Ö×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÎªÁËÁ˽âÄ³ÏØ½ñÄê¸ß¿¼×¼±¸±¨¿¼ÌåÓýרҵµÄѧÉúµÄÌåÖØÇé¿ö£¬½«ËùµÃµÄѧÉúÌåÖØÊý¾Ý·Ö×éÕûÀíºó£¬»­³öÁËÆµÂÊ·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬ÒÑ֪ͼÖдÓ×óµ½ÓÒµÄǰ3С×éµÄƵÂÊa£¬b£¬cÇ¡³ÉµÈ²îÊýÁУ¬Èô³éÈ¡µÄѧÉúÈËÊýÊÇ48£¬ÔòµÚ2С×éµÄƵÊýΪ£¨¡¡¡¡£©
A£®6B£®12C£®18D£®24

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¾ØÕóM=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$£¬¦Â=$[\begin{array}{l}{3}\\{5}\end{array}]$£¬¼ÆËãM2¦Â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªbΪʵÊý£¬iΪÐéÊýµ¥Î»£¬Èô$\frac{2+bi}{1-i}$ΪʵÊý£¬Ôòb=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®´üÖÐÓÐ5¸öÇò£¬ÆäÖÐÓвÊÉ«Çò2¸ö£®¼×¡¢ÒÒ¶þÈËÏȺóÒÀ´Î´Ó´üÖÐÈ¡Çò£¬Ã¿´ÎÈ¡ºó²»·Å»Ø£¬¹æ¶¨ÏÈÈ¡³ö²ÊÉ«ÇòÕß»ñʤ£®Ôò¼×»ñʤµÄ¸ÅÂÊΪ$\frac{3}{5}$£®£¨ÒÔÕûÊý±È×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¶þ´Îº¯Êýy=kx2£¨x£¾0£©µÄͼÏóÔڵ㣨an£¬an2£©´¦µÄÇÐÏßÓëxÖá½»µãµÄºá×ø±êΪan+1£¬nΪÕýÕûÊý£¬a1=$\frac{1}{3}$£¬ÈôÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÔòS5=£¨¡¡¡¡£©
A£®$\frac{3}{2}[{1-{{£¨{\frac{1}{3}}£©}^5}}]$B£®$\frac{1}{3}[{1-{{£¨{\frac{1}{3}}£©}^5}}]$C£®$\frac{2}{3}[{1-{{£¨{\frac{1}{2}}£©}^5}}]$D£®$\frac{3}{2}[{1-{{£¨{\frac{1}{2}}£©}^5}}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®º¯Êýf£¨x£©=$\frac{1}{4}$x2+cosxµÄͼÏó´óÖÂÊÇ£¨¡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸