精英家教网 > 高中数学 > 题目详情
12.已知b为实数,i为虚数单位,若$\frac{2+bi}{1-i}$为实数,则b=-2.

分析 利用复数的运算法则、复数为实数的充要条件即可得出.

解答 解:$\frac{2+bi}{1-i}$=$\frac{(2+bi)(1+i)}{(1-i)(1+i)}$=$\frac{2-b}{2}$+$\frac{(2+b)i}{2}$为实数,
∴$\frac{2+b}{2}$=0,解得b=-2.
故答案为:-2.

点评 本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.根据如图所示的伪代码,若输入的x值为-1,则输出的y值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某业余俱乐部由10名乒乓球队员和5名羽毛球队员组成,其中乒乓球队员中有4名女队员;羽毛球队员中有2名女队员,现采用分层抽样方法(按乒乓球队和羽毛球队分层,在每一层内采用简单随机抽样)从这15人中共抽取3名队员参加一项比赛.
(Ⅰ)求所抽取的3名队员中乒乓球队员、羽毛球队员的人数;
(Ⅱ)求从乒乓球队抽取的队员中至少有1名女队员的概率;
(Ⅲ)记ξ为抽取的3名队员中男队员人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(3,4)$,则向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2+2bx,g(x)=b+lnx(a∈[-1,2],b∈R,b≠0).
(Ⅰ)求命题A:“?x∈R,对于?m∈R+,f(x)=m”为真命题的概率;
(Ⅱ)若a∈Z,b∈{-2,-1,1,2},写出所有的数对(a,b).设函数φ(x)=$\left\{\begin{array}{l}f(x),x≤1\\ g(x),x>1\end{array}$记“?x1,x2∈(-∞,+∞),x1≠x2,$\frac{{φ({x_1})-φ({x_2})}}{{{x_1}-{x_2}}}$>0”为事件B,求事件B发生的概率P(B).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}}\right.$,且z=4x+8y的最大值为(  )
A.21B.23C.28D.31

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sinα-cosα=$\frac{1}{5}$,0≤α≤π,则sin2α=$\frac{24}{25}$,sin(2α-$\frac{π}{4}$)=$\frac{31\sqrt{2}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线C1:y2=2x的焦点F是双曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个顶点,两条曲线的一个交点为M,若|MF|=$\frac{3}{2}$,则双曲线C2的离心率是(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{\sqrt{33}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,PA⊥平面ABCD,E是PD的中点,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,AC=AP=2.
(Ⅰ)求证:PC⊥AE;
(Ⅱ)求二面角A-CE-P的余弦值.

查看答案和解析>>

同步练习册答案