分析 判断出向量的夹角为钝角的充要条件是数量积为负且不反向,利用向量的数量积公式及向量共线的充要条件求出λ的范围即可.
解答 解:向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(λ,-1),$\overrightarrow{a}$,$\overrightarrow{b}$夹角为钝角,
∴$\overrightarrow{a}$•$\overrightarrow{b}$<0且不反向
即λ-2<0且2λ+1≠0
解得λ<2,且λ≠-$\frac{1}{2}$
∴λ的取值范围(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2)
故答案为:(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2)
点评 本题主要考查了向量夹角的范围问题,通过向量数量积公式变形可以解决.但要注意数量积为负,夹角包括钝角和平角两类,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{14}}{14}$ | B. | $\frac{3\sqrt{2}}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com