精英家教网 > 高中数学 > 题目详情
若函数f(x)=lnx,g(x)=x-
2
x

(1)求函数φ(x)=g(x)-kf(x)(k>0)的单调区间;
(2)若对所有的x∈[e,+∞],都有xf(x)≥ax-a成立,求实数a的取值范围.
(1)函数φ(x)=x-
2
x
-klnx的定义域为(0,+∞).
φ′(x)=1+
2
x2
-
k
x
=
x2-kx+2
x2
,记函数g(x)=x2-kx+2,其判别式△=k2-8
①当△=k2-8≤0即0<k≤2
2
时,g(x)≥0恒成立,
∴φ′(x)≥0在(0,+∞)恒成立,φ(x)在区间(0,+∞)上递增.
②当△=k2-8>0即k>2
2
时,方程g(x)=0有两个不等的实根x1=
k-
k2-8
2
>0,x2=
k+
k2-8
2
>0.
若x1<x<x2,则g(x)<0,∴φ′(x)<0,∴φ(x)在区间(x1,x2)上递减;
若x>x2或0<x<x1,则g(x)>0,∴φ′(x)>0,∴φ(x)在区间(0,x1)和(x2,+∞)上递增.
综上可知:当0<k≤2
2
时,φ(x)的递增区间为(0,+∞);当k>2
2
时,φ(x)的递增区间为(0,
k-
k2-8
2
)和(
k+
k2-8
2
,+∞),递减区间为(
k-
k2-8
2
k+
k2-8
2
).
(2)∵x≥e,∴xlnx≥ax-a?a≤
xlnx
x-1

令h(x)=
xlnx
x-1
,x∈[e,+∞),则h′(x)=
x-lnx-1
(x-1)2

∵当x≥e时,(x-lnx-1)′=1-
1
x
>0,
∴函数y=x-lnx-1在[e,+∞)上是增函数,
∴x-lnx-1≥e-lne-1=e-2>0,h′(x)>0,
∴h(x)的最小值为h(e)=
e
e-1

∴a≤
e
e-1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=ln(x2-2ax+3)的值域为R,则实数a的取值范围为
a≥
3
或a≤-
3
a≥
3
或a≤-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)若函数f(x)=ln(x2+ax+1)是偶函数,则实数a的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
.试用这个结论证明:若-1<x1<x2,函数g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1)
,则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,…,λn,满足λ12+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ln(2x+a)与g(x)=bex+1的图象关于直线y=x对称,则a+2b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ln(x+
a
x
-4)的值域为R,则实数a的取值范围是(  )
A、(-∞,4]
B、[0,4]
C、(-∞,4)
D、(0,4)

查看答案和解析>>

同步练习册答案