精英家教网 > 高中数学 > 题目详情
数列{an}中,Sn=n2,某三角形三边之比为a2:a3:a4,则该三角形最大角为
 
考点:余弦定理
专题:解三角形
分析:由数列{an}的前n项和为Sn=n2可以求得a2,a3,a3,再利用余弦定理即可求得该三角形最大角.
解答: 解:由Sn=n2得a2=S2-S1=4-1=3,同理得a3=5,a4=7,
∵3,5,7作为三角形的三边能构成三角形,
∴可设该三角形三边为3,5,7,令该三角形最大角为θ,
则cosθ=
32+52-72
2×3×5
=-
1
2

又 0°<θ<180°
∴θ=120°.
故答案为:120°.
点评:本题考查了余弦定理,解题的关键是利用等差数列的前n项和公式求得三角形三边.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,△ABC的面积S满足S=
3
2
bccoaA.
(Ⅰ)求角A的值;
(Ⅱ)若S=2
3
,a=2
3
,求△ABC的周长l.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点,方向向量为(1,
3
)
的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)等腰直角△ABC的一条直角边长为4,若将该三角形绕着直角边旋转一周所得的几何体的体积是V,则V=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的三棱柱中,点A、BB1的中点M以及B1C1的中点N所确定的平面把三棱柱切割成体积不相等的两部分,则小部分的体积与大部分的体积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(2,0)的直线把圆x2+y2≤1(区域)分成两部分(弓形),它们所包含的最大圆的直径之比是1:2,则此直线的斜率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式ax2+2ax-4≥2x2+4x的解集为空集,则实数a的取值范围是(  )
A、(-2,2)
B、(-∞,2]
C、(-2,2]
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),设其导函数为f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),令F(x)=xf(x),则满足F(3)>F(2x-1)的实数x的取值范围是(  )
A、(-2,1)
B、(-1,
1
2
C、(
1
2
,2)
D、(-1,2)

查看答案和解析>>

同步练习册答案