分析 求出直线x-y-1=0的斜率,利用两直线垂直时斜率的乘积为-1求出过点B的直径所在直线方程的斜率,求出此直线方程,根据直线方程设出圆心C坐标,根据|AC|=|BC|,利用两点间的距离公式列出方程,求出方程的解确定出C坐标,进而确定出半径,写出圆的方程即可.
解答 解:∵直线x-y-1=0的斜率为1,
∴过点B直径所在直线方程斜率为-1,
∵B(2,1),
∴此直线方程为y-1=-(x-2),即x+y-3=0,
设圆心C坐标为(a,3-a),
∵|AC|=|BC|,即$\sqrt{(a-4)^{2}+(3-a-1)^{2}}$=$\sqrt{(a-2)^{2}+(2-a)^{2}}$,
解得:a=3,
∴圆心C坐标为(3,0),半径为$\sqrt{2}$,
则圆C方程为(x-3)2+y2=2.
点评 此题考查了圆的标准方程,涉及的知识有:两点间的距离公式,两直线垂直时斜率满足的关系,求出圆心坐标与半径是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{π}{12}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13}{16}$ | B. | $\frac{4}{243}$ | C. | $\frac{13}{243}$ | D. | $\frac{80}{243}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1-$\sqrt{10}$) | B. | $(-1-\sqrt{10},-1+\sqrt{10})$ | C. | $[{-1+\sqrt{10},+∞})$ | D. | $[{-1-\sqrt{10},-1+\sqrt{10}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com