精英家教网 > 高中数学 > 题目详情
12.过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),求圆C的方程,并确定圆心坐标和半径.

分析 求出直线x-y-1=0的斜率,利用两直线垂直时斜率的乘积为-1求出过点B的直径所在直线方程的斜率,求出此直线方程,根据直线方程设出圆心C坐标,根据|AC|=|BC|,利用两点间的距离公式列出方程,求出方程的解确定出C坐标,进而确定出半径,写出圆的方程即可.

解答 解:∵直线x-y-1=0的斜率为1,
∴过点B直径所在直线方程斜率为-1,
∵B(2,1),
∴此直线方程为y-1=-(x-2),即x+y-3=0,
设圆心C坐标为(a,3-a),
∵|AC|=|BC|,即$\sqrt{(a-4)^{2}+(3-a-1)^{2}}$=$\sqrt{(a-2)^{2}+(2-a)^{2}}$,
解得:a=3,
∴圆心C坐标为(3,0),半径为$\sqrt{2}$,
则圆C方程为(x-3)2+y2=2.

点评 此题考查了圆的标准方程,涉及的知识有:两点间的距离公式,两直线垂直时斜率满足的关系,求出圆心坐标与半径是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知圆O:x2+y2=4,直线$l:x+\sqrt{2}y-6=0$,则圆O上任意一点A到直线l的距离小于$\sqrt{3}$的概率为(  )
A.$\frac{π}{6}$B.$\frac{1}{3}$C.$\frac{π}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设随机变量X:B(n,p),若X的数学期望E(X)=2,方差D(X)=$\frac{4}{3}$,则P(X=2)=(  )
A.$\frac{13}{16}$B.$\frac{4}{243}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图是一个几何体的三视图,若它的体积是3,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,角α的顶点为坐标原点,始边在x轴的正半轴上.
(1)当角α的终边为射线l:y=2$\sqrt{2}$x (x≥0)时,求cos(α+$\frac{π}{6}$)的值;
(2)已知$\frac{π}{6}$≤α≤$\frac{3π}{4}$,试求$\frac{3}{2}$sin2α+$\sqrt{3}$cos2α-$\frac{\sqrt{3}}{2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x>0,y>0,$\frac{2}{x}+\frac{1}{y}$=1,若2x+y>m2+2m恒成立,则实数m的取值范围是(  )
A.(-∞,-1-$\sqrt{10}$)B.$(-1-\sqrt{10},-1+\sqrt{10})$C.$[{-1+\sqrt{10},+∞})$D.$[{-1-\sqrt{10},-1+\sqrt{10}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果将直线l向右平移3个单位,再向上平移2个单位后所得的直线与l重合,则该直线l的斜率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,F1,F2是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右两个焦点,|F1F2|=4,长轴长为6,又A,B分别是椭圆C上位于x轴上方的两点,且满足$\overrightarrow{A{F_1}}$=2$\overrightarrow{B{F_2}}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求直线AF1的方程;
(Ⅲ)求平行四边形AA1B1B的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过(0,$\sqrt{2}$)斜率为k的直线l与椭圆$\frac{x^2}{2}$+y2=1交于不同两点P、Q.
(1)求k取值范围;
(2)是否存在k使得向量$\overrightarrow{OP}$•$\overrightarrow{OQ}$=1?若存在,求出k的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案